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A B S T R A C T

We computed the dynamic response of an idealized thermometric net radiometer, when driven by an

oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative

environment such as might be expected during field use of such devices. The study was motivated by

curiosity as to whether non-linearity of the surface boundary conditions implies the existence of a non-

vanishing mean signal even when mean forcing (i.e. mean net radiation) vanishes. These simulations do

not prove (and owing to discretization and roundoff error, cannot prove) such a bias is absolutely non-

existent, however they establish that the bias is of negligible practical importance, even for

unrealistically large fluctuations in the net radiation. Other aspects of net radiometer design must

account for the serious errors known to sometimes result (in the case of many devices), from field

application of steady-state calibration factors.
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1. Introduction

Several authors have considered the possibility that the net
radiation measurement may be the seat of the widely reported
energy balance closure problem, often presupposing that time
variation of the radiative fluxes on turbulence timescales need not
be considered. However by virtue of the boundary conditions on its
upper and lower planes, the equations governing the response of a
thermometric radiometer are non-linear, raising the possibility
that, if either or both of the upward and downward longwave flux
densities (L " ; L # ) do vary in time on frequencies f that are rapid
compared to the reciprocal of the thermal time constant of the
device (roughly, d2

=k�10 s; k is the thermal diffusivity and d is the
thickness of the substrate), a mean signal may be produced even in
the absence of a mean net longwave flux density L� ¼ L " � L # .
Since the longwave fluxes certainly do fluctuate on rapid time-
scales, in response to the spectrum of air temperature fluctuations,
the passage of clouds, and possible variation of plant canopy and
ground temperatures, such a bias (if significant in magnitude)
would compromise use of this type of instrument, or at least
demand a correction. Laboratory and field studies of a range of net
radiometers led Smith et al. (1997) to conclude there is ‘‘a
fundamental deficiency in the two-sided thermopile design used in
most net pyrradiometers under non-equilibrium conditions.’’
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Where measurements fail to close the energy balance, it is
generally found that the sum QH þ QE of the convective fluxes (of
sensible and latent heat, respectively) underestimates the avail-
able energy Q� � QG �DQS (where Q� is the net radiation, QG is the
soil heat flux density, and DQS any storage term). Accordingly,
many authors have considered that the seat of the problem lies
with estimation of the convective fluxes1. However Kohsiek et al.
(2007) focused on the radiative fluxes (as measured by thermo-
metric radiometers), and indicate a possibility that the radiation
term may lie at the root of the problem (though these authors
assumed that error in Q�, if present, would have arisen from spatial
inhomogeneity of the site, or from radiometer calibration
inaccuracy; they did not question the principle of the thermometric
radiometer). Mauder et al. (2007), participants in the same
experiment (EBEX-2000), recommend that ‘‘net radiation is
preferably to be inferred from its four components, rather than
measured directly.’’ Echoing Brotzge and Duchon (2000) they note
that ‘‘no international agreement exists on a radiation standard
and calibration procedure’’ for the pyrgeometer (i.e. hemispheric
longwave radiometer) and that ‘‘there is no agreement on the
mathematical description of the physics of the instrument.’’ As
regards the latter, according to Mauder et al. the World Radiation
1 On the basis of Large Eddy Simulations Huang et al. (2008) reported, as have

earlier authors, that the underlying cause of the energy balance closure problem is

(or can be) inadequate spatial representativity of point measurements of the

vertical fluxes.
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Center recommends the formula given by Philipona et al. (1995, Eq.
(11)) and which was earlier derived by Albrecht et al. (1974, Eq.
(9)), viz.:

L� ¼ Uemf

C
ð1þ k1sT3

B Þ þ k2sT4
B � k3sðT4

D � T4
B Þ; (1)

where Uemf is the thermopile voltage, TB the temperature of the
cold junction of the thermopile, TD the dome temperature, and
C; k1; k2; k3 are the calibration constants. Eq. (1) takes account of
the differing temperatures of the dome and the substrate; it was
derived assuming a steady radiation environment and steady
temperature distribution within the device and, for that reason,
will be of no further interest to us here.

2. Analysis of an idealized net radiometer

We wish to establish whether the mean temperature gradient
induced in a thermometric net radiometer is a function (uniquely)
of the mean net radiative flux density, irrespective of the steadiness
(or otherwise) of the radiation field, and irrespective of any
constraint on the magnitude of fluctuations in the radiometer’s
substrate temperature. We idealize the device as a slab (Fig. 1)
whose material properties and whose temperature are uniform on
the horizontal axes (one-dimensional treatment): the ‘signal’ is the
difference DT ¼ Tu � Tb in temperature between the upper and
lower surfaces. We ignore shortwave radiation entirely, and adopt
the two-stream approach to describe the longwave radiation field.
We assume the upper and lower surfaces have the same emissivity
e, which is also the absorptivity. We neglect any convective heat
fluxes, and ignore the realities of radiative interaction with the
dome that would need to be used to effect that simplification.
Furthermore we treat the material properties as independent of
temperature, so that from the mathematical point of view we have
a linear equation (the ‘heat equation’) subject to non-linear
boundary conditions.

2.1. Dimensional analysis

The properties of primary relevance to the temporal response of
the radiometer substrate are its conductivity (k;W m�1K�1);
specific heat capacity (cs; J kg�1K�1); density (rs;kg m�3); and
thickness (d). The thermal diffusivity (k ¼ kr�1

s c�1
s ;m2 s�1) is not

an independent quantity. These properties entail four (m ¼ 4)
fundamental dimensions, e.g. length, time, mass, temperature.
Now if we focus on the time constant t, we have five (n ¼ 5)
variables of interest, and can expect an explicit prediction since
Fig. 1. Definitional schematic of idealized thermometric radiometer, and associated

mathematical model.
n�m ¼ 1. By inspection:

t

d2k�1
¼ a; (2)

where Funk (1960) cites a result by Ingersoll that indicates a�0:5
(note: where t is cited later, we have evaluated Eq. (2) with
a ¼ 1=2, however the correctness of our results does not hinge on
this choice). For an order of magnitude estimate of t, we may take
the radiometer described by Fritschen (1965): here an epoxy
substrate (k�10�7 m2 s�1) had a depth d�0:003 m, and Fritschen
measured the time constant to be 12 s (while Eq. (2) gives about
45 s). Halldin and Lindroth (1992; their Table 1) and Smith et al.
(1997; their Tables 1a, b) confirm that most modern net
radiometers have a time constant in the range 20–40 s, although
faster devices do exist (e.g. Brotzge and Duchon, 2000; Cobos and
Baker, 2003).

2.2. Governing equations

Conservation of energy on the upper and lower planes requires:

0 ¼ eL # ðtÞ � esT4
u ðtÞ � k

@T

@z

� �
u

; (3)

0 ¼ eL " ðtÞ � esT4
b ðtÞ þ k

@T

@z

� �
b

; (4)

and these equations furnish the boundary conditions for the heat
budget within the substrate,

csrs

@T

@t
¼ � @

@z
�k

@T

@z

� �
¼ k

@2
T

@z2
(5)

(for convenience, we will define c ¼ rscs, the volumetric heat
capacity). An initial condition:

Tðz;0Þ ¼ f 0ðzÞ (6)

completes the mathematical specification, where we shall set
f 0ðzÞ ¼ T0 ¼ const., the ‘background’ temperature.

Due to the non-linearity of the boundary conditions we have a
non-linear system, and we believe that a general and exact
solution for the response to time-dependent forcing, even if
limited to the case of sinusoidal forcing (e.g. in one or both of
L # ; L " ), cannot be obtained. The difficulty can be seen if one
envisages a spectral decomposition of the temperature profile
within the device, for the non-linear boundary conditions
guarantee wave–wave interaction, that is, irrespective of the
state at time t, (spectral) energy must propagate from the modes
present at time t to an expanding range of harmonics. Suppose, for
example, that the decomposition for Tu entailed a ‘kth’ (arbitrary)
mode, viz. akðtÞ sin ð2pkz=dÞ. The upper boundary condition would
involve sin 4ð2pkz=dÞ� ½3� 4 cos ð4pkz=dÞ þ cos ð8pkz=dÞ�=8, and
as a consequence there would be contributions to the amplitude-
tendencies (@a2k=@t;@a4k=@t) of the ð2k;4kÞharmonics. Conductive
smoothing, proportional to k2, will of course moderate this
spectral transfer towards the higher wavenumbers.

Thus one cannot hope to find an exact and general dynamic
solution. The textbook treatment of the radiometer (given later in
Section 2.5) is limited to the steady-state case, and yields an
analytical relationship linking DTðtÞ� TuðtÞ � TbðtÞwhich is sensed
by a thermopile, to the net radiation L�ðtÞ� L # ðtÞ � L " ðtÞ.

2.3. Implications of the non-linear boundary condition

We are interested in the undoubted time variation of the
radiation fluxes (L # ; L " ) incident on a radiometer in the field, and
more specifically whether their variability might cause a radio-
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meter bias (in the sense that the mean signal DT did not vanish
even when the mean net radiation L� did). It is helpful to envisage
an equilibrium (or reference) state, in which the radiometer itself
and its environment (near and remote) are in an isothermal
equilibrium at temperature T0: the incident radiation fluxes are
L # ¼ L " ¼ sT4

0 , of which a fraction e is absorbed by the device
(which itself radiates at rate esT4

0 ). The environmental net
radiation is zero, the net rate of radiative energy supply to the
device itself is zero, and there is no output signal (Tu � Tb ¼ 0).

But now suppose we add an offset AðtÞ to the downward
radiative flux (for argument’s sake) such that L # ¼ L " þ AðtÞ ¼
sT4

0 þ AðtÞ. Then:

(i) If AðtÞ is sinusoidal one may assume there will be (at
asymptotically large time after initialization) a sinusoidal
component to the temperature Tu of the upper plane, such that
TuðtÞ ¼ Tu þ Au sin ð2p ftÞ, where the overbar denotes the mean
over exactly one forcing cycle. A simple integration proves that

T4
u � T

4

u �
3

8
A4

u þ 3T
2

uA2
u; (7)

and so the resulting mean rate of emission of longwave

radiative energy from the upper plane will exceed esT
4

u .
(ii) Without restriction on the form of TuðtÞ, if we write TuðtÞ ¼

Tu þ T 0u (where the overbar no longer carries the implication of
being an average over one forcing cycle) then it follows that

T4
u � T 4

u ¼ T 04u þ 6T
2

u T 02u þ 4TuT 03u : (8)

This again suggests that (unless the signal Tu is negatively

skewed) the mean radiation load on the substrate could be

shed by an upper surface temperature that, by virtue of its

oscillation, had a mean value lower than that (T0) which would

be required for a static balance (i.e. in the reference state).

2.4. Rigorous steady-state solution

A rigorous algebraic solution can be obtained if the device is in
steady state, under forcing by a constant net radiation L�, because
in this case it is clear the temperature profile must be linear. Let
L # ¼ L " þ A ¼ sT4

0 þ A where T0 is a ‘background’ temperature, so
that the (steady) net radiation is L� ¼ A.

Because it simplifies the algebra, in this section we introduce
the coordinate z ¼ zþ d=2 and write the trial (steady state)
solution as TðzÞ ¼ aþ bz, which trivially satisfies Eq. (5), since
@=@z� @=@z. The two boundary conditions furnish two equations in
a;b. Using Eq. (4) gives:

b ¼ es
k
ða4 � T4

0 Þ; (9)

which establishes that the base temperature (a� Tb) must differ
from the background temperature if there is to be a steady-state
linear gradient in the substrate (e.g. if A>0 it is necessary that
Tb > T0, in order that conductive heat supply towards the base be
dissipated radiatively by an excess of esT4

b over the absorbed
fraction, esT4

0 , of L " ). Substituting this result into Eq. (3) and
rearranging gives:

aþ d

k
esða4 � T4

0 Þ
� �4

þ a4 ¼ 2T4
0 þ As�1: (10)

If A ¼ 0, a solution is a ¼ T0, b ¼ 0. By setting A ¼ 1 W m�2 we can
solve numerically to obtain the (inverse of the) calibration factor,
i.e. the top-bottom temperature difference DT ¼ Tu � Tb ¼ bd

corresponding to unit net radiation (we name this quantity ‘‘g ’’
[K ðW m�2Þ�1

]). We shall see that this proves to be consistent with
the ‘textbook’ calibration factor gT defined by Eq. (24) in Section
2.5, and it provides a useful check on the numerical method we
later use to obtain dynamic solutions (Section 3).

2.4.1. Uniqueness of solutions

Before proceeding to the textbook calibration and a more
general, dynamic calibration, it is useful to prove that our idealized
radiometer problem has a unique solution. The proof begins by
positing that T1ðz; tÞ and T2ðz; tÞ are (arbitrary) solutions to
Eqs. (3)–(6), and we introduce their difference, fðz; tÞ ¼ T1 � T2.
If it can be proven that f vanishes for all time, it follows that (any)
solution is unique.

The reader will at once see that f, being a linear superposition
of known solutions to the heat equation, satisfies the heat
equation; and that its initial value is fðz;0Þ ¼ 0. The boundary
conditions controlling its subsequent evolution are

0 ¼ �esðT4
1u � T4

2uÞ � k
@f
@z

� �
u

; (11)

0 ¼ �esðT4
1b � T4

2bÞ þ k
@f
@z

� �
b

; (12)

and may be re-written:

@f
@z

� �
u

¼ � esBuðtÞ
k

fu; (13)

@f
@z

� �
b

¼ þ esBbðtÞ
k

fb; (14)

where

BuðtÞ ¼ ½T2
1u þ T2

2u�ðT1u þ T2uÞ�0; (15)

BbðtÞ ¼ ½T2
1b þ T2

2b�ðT1b þ T2bÞ�0: (16)

It is probably already clear (intuitively) that the difference f ¼
T1 � T2 between (putatively) distinct general solutions not only is
initially zero, but must remain so for all time. A completing
(formal) argument that f remains zero is readily given by
consideration of the ‘energy equation’ (Zauderer, 1989) associated
with the heat equation, viz.:

f
@f
@t
¼ kf

@2f
@z2

(17)

or

@f2

@t
¼ 2k

@
@z

f
@f
@z

� �
� @f

@z

� �2
" #

: (18)

Integrating on �d=2 � z � d=2 one obtains the result that

d

dt

Z u

b
f2ðz; tÞdz � 0 (19)

and since the initial value of this integral vanishes, so do all
subsequent values. Thus if once we can find a solution for the
temperature profile in our radiometer, we can be sure it is the
unique solution. The significance of this section is that a numerical
solution, provided it entails negligible discretization error, can be
accepted as a good approximation to the exact (but unknown)
solution.

2.5. The textbook treatment

The well-known textbook analysis of the thermometric net
radiometer (e.g. Fritschen, 1963; Fritschen and Gay, 1979, p. 96;
Szeicz, 1975, p. 236), and indeed the very concept of the device,
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apparently originated2 with Albrecht (1933). Albrecht’s treatment
eliminates heat transfer within the substrate from further
consideration, by invoking the restriction:

k
@T

@z

� �
u

¼ k
@T

@z

� �
b

¼ k
Tu � Tb

d
: (20)

Here the conductive flux to/from the upper face is taken to be
identical to the conductive flux from/to the lower face, and both
are parameterized in terms of the finite difference ðTu � TbÞ. One
takes the difference between Eqs. (3) and (4):

0 ¼ eðL # � L " Þ � esðT4
u � T4

b Þ � 2k
Tu � Tb

d

� �
(21)

and with the aid of a linearization:

T4
u 	 T4

b þ
dT4

dT

 !
T¼Tb

ðTu � TbÞ ¼ T4
b þ 4T3

b ðTu � TbÞ (22)

one arrives at the textbook calibration:

eL� ¼ ðTu � TbÞ 4esT3
b þ

2k

d

� �
(23)

or

Tu � Tb

L�
�gT ¼ e 4esT3

b þ
2k

d

� ��1

(24)

(in the textbook derivation a term in the square bracket that arises
from convective coupling would be included, then eliminated as a
presumed consequence of the intervention of the ‘domes’).
Inserting plausible values shows the term in T3

b can be neglected
in favour of 2k=d. Thus the substrate conductivity emerges as the
factor controlling the steady-state (static) calibration factor: the
weaker the conductive coupling between the two faces, the greater
the temperature difference that must prevail at steady state.

Now Eq. (20), in conjunction with Eqs. (3) and (4), gave us a
system of three equations in three unknowns: Tu; Tb; ð@T=@zÞu. The
above ‘textbook approximation’ results from subtracting Eqs. (3)
and (4). We may, instead, add. This eliminates the conductive heat
flux term (but of course only subject to the validity of Eq. (20), and
gives another equation complementing Eq. (23), viz.:

0 ¼ eðL # þ L " Þ � esðT4
u þ T4

b Þ; (25)

where the sum L # þ L " of the two longwave irradiances (both
positive, by definition) is (of course) not the same quantity as the
environmental net longwave radiation, L� � ðL # � L " Þ. Eq. (25) is
correct under the assumption it has invoked, namely a time-
invariant and linear temperature gradient, in turn implying steady
state: it simply says that, in that steady state, the conductive
transport of heat within the substrate does not affect the overall
energy balance and the total rate of longwave emission from the
device must equal its total rate of absorption of incoming longwave
radiation. This is obvious, and consistent with the result obtained
by integrating Eq. (5) across the device, viz.:

c
@
@t

Z d=2

�d=2
Tðz; tÞdz ¼ cd

@T

@t
¼ k

@T

@z

� �
u

� k
@T

@z

� �
b

; (26)
2 Suomi et al. (1954) stated that Albrecht (1933) had ‘‘shown that the net

radiation can be obtained very nearly by exposing a blackened plate parallel to the

earth’s surface and measuring the temperature difference existing through it.’’ A

colleague’s reading of the original Albrecht (1933) supports our inference that

Albrecht originated the principle of the familiar thermometric net radiometer. It is

perhaps appropriate to reiterate here a statement of Smith et al. (1997), based on

their careful examination of the response of numerous net radiometers: ‘‘We find a

fundamental deficiency in the two-sided thermopile design used in most net

pyrradiometers under non-equilibrium conditions.’’
where T is the mean temperature of the radiometer slab (if the
temperature profile in the substrate were linear, then
T ¼ ðTu þ TbÞ=2). Upon eliminating the conduction terms by
application of the boundary conditions (Eqs. (3) and (4)) this
yields:

cd
@T

@t
¼ eðL # þ L " Þ � es T4

u þ T4
b

� �
(27)

and in steady state we recover Eq. (25).
An interesting result emerges if one weights each term in the

heat equation (Eq. (5)) by position, before integrating across the
slab. The property:

sðtÞ ¼
Z d=2

�d=2
z Tðz; tÞdz (28)

should be proportional to the signal3DT , and obeys:

c
@s

@t
¼
Z d=2

�d=2
z
@2

T

@z2
dz; (29)

which upon integration by parts gives the result:

c
@s

@t
¼ e L # � L "

� �
� es T4

u � T4
b

� �
� 2k

Tu � Tb

d

� �
: (30)

This generalizes Eq. (21) to non-steady conditions.

3. Numerical analysis

We would like to know (in the most general terms) the response
of the output DTðtÞ to the forcing L�ðtÞ ¼ L # ðtÞ � L " ðtÞ. The device
is non-linear, it will certainly exhibit inertia, and it may well
exhibit hysteresis (implying the relationship between DT and L� is
not single-valued; hysteresis is an observed property of some
radiometers, e.g. Halldin and Lindroth, 1992). Standard approaches
of ‘linear systems theory’ would be to try to derive the step
response, and the sinusoidal response, both of which are implied
by the transfer function (ratio of the Laplace transform of the
output to Laplace transform of the input). Here we shall calculate
(numerically) the full response of the radiometer out to a time
t
 t (the device time constant), when initialized in an isothermal
state T0, and driven by irradiances:

L # ðtÞ ¼ sT4
0 þ A sin ð2p ftÞ;

L " ¼ sT4
0

(31)

such that L�ðtÞ ¼ A sin ð2p ftÞ.
In this section it is to be understood that T represents the

deviation of the temperature from the background temperature T0,
this last in Kelvin units. The differential equation and boundary
conditions have been transformed into a closed set of algebraic
relations between the temperature deviations TJ at a set of
gridpoints located at

zðJÞ ¼ J
d

2N
; J ¼ �N . . . N (32)

(grid interval Dz ¼ d=ð2NÞÞ, where for all simulations to be shown,
N ¼ 499. At each internal gridpoint (jJj<N) the heat equation was
discretized using the Crank–Nicolson scheme:

Tn
J � Tn�1

J

Dt
¼ k

2Dz2
½Tn

Jþ1 þ Tn
J�1 � 2Tn

J �

þ k
2Dz2

½Tn�1
Jþ1 þ Tn�1

J�1 � 2Tn�1
J �;

(33)

which is second-order accurate in Dt;Dz.
3 Certainly it is in steady state, for then the temperature profile is linear.



Table 1
Simulations of response of radiometer (with properties defined in Section 3.2) to sinusoidal forcing of the downward longwave irradiance with amplitude A and frequency f.

Background temperature T0 ¼ 293:16 K. The rightmost column gives the equivalent error in measured net radiation induced by the oscillating net radiative forcing, obtained

by combining the computed steady-state calibration factor with the radiometer’s computed mean signal DT ¼ Tu � Tb defined over exactly one cycle 1= f , beginning 10t after

initialization in the isothermal state. (Simulated values for the temperature of the lower plane and the top–bottom temperature difference, under forcing by a steady

difference of 1 W m�2, were Tb ¼ aNum ¼ 293:2412 K, DT ¼ gNum ¼ 0:00624295 K.)

f ½s�1� ft l (mm) A (W m�2) A=ð4sT3
0 Þ

(K)

DT (K) AT ðd=2Þ
(K)

s½T4
t � T

4

t �
(W m�2)

DTð4sT3
0 Þ=A DT=gNum

(W m�2)

0.005 0.175 2.862 10 1.75 þ2:6� 10�5 8:0� 10�2 9:0� 10�5 þ1:47� 10�5 þ4:1� 10�3

0.05 1.749 0.905 10 1.75 þ7:5� 10�7 2:7� 10�2 1:1� 10�5 þ4:3� 10�7 þ1:2� 10�4

0.5 17.49 0.286 10 1.75 �1:7� 10�7 9:0� 10�3 1:1� 10�6 �9:8� 10�8 �2:7� 10�5

0.05 1.749 0.905 50 8.75 þ1:8� 10�6 1:4� 10�1 2:8� 10�4 þ2:0� 10�6 þ2:8� 10�4

0.05 1.749 0.905 200 35.0 �1:4� 10�5 5:5� 10�1 4:4� 10�3 þ4:3� 10�7 �2:2� 10�3

4 Contrary to what was anticipated in Section 2.2.
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3.1. Tridiagonal system

If the temperature gradients on upper and lower faces are
discretized in the crudest and most obvious manner:

@T

@z

� �n

u

¼ Tn
N � Tn

N�1

Dz
;

@T

@z

� �n

b

¼
Tn
�Nþ1 � Tn

�N

Dz

(34)

the complete closed system of equations constitutes a tridiagonal
matrix inversion problem, with the penalty that the above
‘computational molecules’ are only first order accurate in Dz (in
principle, this inelegant choice may be compensated by refining Dz

to keep discretization error at an acceptable level).
Of course it is necessary to linearize the boundary conditions,

which has been done as follows (we show only the upper surface).
First, let ðmÞTn

J represent the mth iteration towards an eventual
converged estimate Tn

J of the temperature deviation at the ‘new’
time (n). Then taking the first term in a Taylor expansion, we may
write (temporarily suppressing the indices n; J):

½T0 þ ðmÞT�
4	 ½T0 þ ðm�1ÞT�4 þ 4½T0 þ ðm�1ÞT�3½ðmÞT � ðm�1ÞT�: (35)

In this spirit, the upper boundary condition is discretized:

4es
rscs

T0þðm�1ÞTn
N

h i3
þ k

Dz

� �
ðmÞTn

N ¼
k

Dz
ðmÞTn

N�1

þ e
rscs

L#ðtÞ

þ4es
rscs

T0þðm�1ÞTn
N

h i3 ðm�1ÞTn
N

� es
rscs

T0þðm�1ÞTn
N

h i4

(36)

with a similar equation for the lower face (it may be helpful to
write T� � ðm�1ÞTn

N as the known, latest provisional estimate).
Having introduced this more complex terminology, we rewrite the
Crank–Nicolson algorithm for the internal gridpoints:

ðmÞTn
J � Tn�1

J

Dt
¼ k

2Dz2
½ðmÞTn

Jþ1 þ ðmÞTn
J�1 � 2ðmÞTn

J �

þ k
2Dz2

½Tn�1
Jþ1 þ Tn�1

J�1 � 2Tn�1
J �;

(37)

where the lack of the supplementary iteration counter (m) at time
level ðn� 1Þ emphasizes known values at the ‘prior time’ that do
not evolve during the iteration.

For the solutions to follow, the timestep Dt ¼ ð1= f Þ=M, where
M ¼ 104 (note: the Crank–Nicolson scheme is unconditionally
stable, and the choice of such a small timestep was made in order
that we should evaluate the response of the device over an exact
number of cycles in the forcing, so as not to spuriously infer the
existence of an offset that might be nothing more than a
consequence of inexactness in the numerical integration). The
inner loop was iterated (to a limit m � 50) so long as
max ðall JÞfjðmÞTJ � ðm�1ÞTJ jg>10�18 K. The reader will probably
expect that the response of the temperature in the substrate to
sinusoidal forcing would be sinusoidal, but as we do not have a
linear system it is worthwhile to be explicit: but for a decaying
initial phase (discussed later), the computed response was indeed
sinusoidal4.

3.2. Specification of the case study

The following solutions pertain for the case:

d ¼ 0:003 m;

rs ¼ 1060 kg m�3
;

cs ¼ 1613 J kg�1K�1;
k ¼ 0:22 W K�1 m�1;
e ¼ 0:95;
T0 ¼ 20 �C:

These substrate properties correspond to those of a generic epoxy
(e.g. Sundqvist et al., 1977; Gustafsson et al., 1979); and they imply
k ¼ 1:29� 10�7m2s�1, and (with a ¼ 0:5 in Eq. (2)) t ¼ 35:0 s.

3.3. Steady state—(analytical)

The steady-state base temperature Tb ¼ a for the case of a
steady net radiation L� ¼ 1 W m�2 was determined, by finding the
zero crossing(s) of Eq. (10) using a simple search covering range
T0 
 20 K, with resolution Da ¼ 10�6 K. A single zero was
identified on this range, at a ¼ 293:24 K, i.e. Tb � T0 ¼ 0:08 K at
steady state with L� ¼ 1W m�2. The steady-state sensitivities
(calibration factors) are

gT ¼ 0:0062461 KðW m�2Þ�1
;

g ¼ 0:0062460 KðW m�2Þ�1

where gT is the linearized ‘textbook’ value, and g was obtained
from Eq. (9). That these estimates compare favourably with the
value (gNum ¼ 0:00624295) obtained by numerical solution is
evidence for the reasonable accuracy of the latter.

3.4. Computed sinusoidal response

For the results to be reported (Table 1), the longwave radiation
beams were specified by Eq. (31). Table 1 documents the
computed behaviour of the radiometer, for frequencies
f ¼ ð0:005;0:05;0:5Þ Hz, and for several forcing amplitudes.

The amplitude (‘‘Au’’ = AT(d/2)) of the cycle in the temperature Tu of
the upper surface is rather small, such that the distinction between



Fig. 2. Numerically simulated profiles of temperature deviation away from the

background temperature T0, during one cycle of forcing ( f ¼ 0:05 Hz,

A ¼ 10 W m�2) and plotted at intervals 0:04= f . The amplitude of the

temperature wave at the upper surface, determined from the ensemble of

profiles at intervals Dt ¼ 10�4ð1= f Þ, was Au �AT ðd=2Þ ¼ 0:0275 K.
Fig. 4. Time variation of the temperature Tb at the base of the radiometer, with forcing

frequency f ¼ 0:05 Hz and amplitude A ¼ 10 W m�2. (The amplitude of the

oscillation may be perceived as growing with t=t, however this is an optical illusion.)
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u (W m�2) is practically insignificant (and in
accordance, incidentally, with Eq. (8)). Consequently, there is no
appreciable bias: the mean value DT � Tu � Tb is negligible. In
hindsight, had we considered the plausible magnitude of the waves
in surface temperatures Tu; Tb likely to be induced by plausible
field fluctuations in L # ; L " , we should have reached this conclusion
by a much quicker, albeit heuristic, argument.

Fig. 2 shows the behaviour of the temperature wave over a
single forcing cycle (for the case f ¼ 0:05 Hz), commencing at
t=t ¼ 10 (where t ¼ 35 s is the device time constant). The
amplitude ATðzÞ of the driven oscillation in the radiometer’s
temperature is expected to decay on damping depth:

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðp f Þ

q
; (38)
Fig. 3. Attenuation with depth of the normalized amplitude AT ðzÞ=AT ðd=2Þ of the

temperature deviation from background temperature T0, during one cycle of forcing

( f ¼ 0:05 Hz, A ¼ 10 W m�2). The dashed line gives the theoretical attenuation

curve, viz. exp ½�ðd=2� zÞ=l�, where for this case l ¼ 0:905 mm.
and Fig. 3 shows that broadly speaking the computed attenuation
matches expectation, however with a systematic departure far
from the surface (normalization forces the match at the upper
surface z ¼ d=2).

Returning to Fig. 2, we note that the damped oscillation in Tb,
seen in snapshots across a forcing single cycle, is not centred on
zero (that is, not centred on Tb ¼ T0). Fig. 4, a plot of TbðtÞ, shows
that the centre point of the oscillation steps promptly away from T0

when excitation commences at t ¼ 0, then relaxes on a rather a
long timescale, such that by about t=t�100 the oscillation is
centred on T0 (here again, t is the intrinsic time constant from
Eq. (2), evaluated with a ¼ 1=2). We did not anticipate this long
transient, and are unsure whether it is a numerical artifact, or a real
facet of this non-linear device.

4. Conclusion

Our results show that, if there is a calibration bias in the sense
defined earlier, then it is so small (for plausible amplitudes of the
variation in radiative forcing) as to be of no practical importance.
Of course having investigated the question numerically, owing to
the existence of discretization and machine roundoff error we
cannot (and do not) say such a bias is absolutely non-existent: to
the contrary , we believe a small bias does exist – based on the
reasoning of Section 2.3.

Real net radiometers are much more complex than the idealized
device studied here, e.g. by virtue of convective heat exchange, and
radiative interaction with the dome used to eliminate it. Others
(e.g. Albrecht et al., 1974; Albrecht and Cox, 1977) have long ago
derived and tested calibration formulae accounting for this aspect.
Nonetheless (Smith et al., 1997), reporting their detailed labora-
tory and field investigation of a representative range of real net
radiometers, noted that most radiometers had a ‘‘longer ramp-
down response than ramp-up response,’’ a phenomenon which
eludes (i.e. whose origin lies outside) the simplistic model adopted
here; by driving the ‘‘numerical radiometer’’ with an upward or
downward step (of magnitude up to 100 W m�2) in (alternatively)
L # or L " , we found (as one would suspect from the equations) that
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the response was completely symmetrical. Smith et al. concluded
‘‘A theoretical analysis of net pyrradiometer design, in conjunction
with the conductivity tests, suggest that this type of radiometer is
always susceptible to uncertainty errors of 5–10% when used in
actual field conditions because the thermal steady-state/zero flow
assumptions under which the instruments are calibrated are not
valid for a realistic measuring environment’’ (see also Halldin et al.,
1999). Our having here proven the insignificance of a particular
bias that originates from non-linearity of the boundary conditions
does not assuage the concern that these conclusions of Smith et al.
(and others since) have prompted.
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