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ABSTRACT

When a particle descends beneath the (nominal) lower boundary of the atmosphere, it may remain there
for some time 7 before it reemerges into the (resolved) flow. In particle trajectory models. 7 is the random
duration of unresolved trajectory segments, below the height z, at which an artificial reflection boundary
condition is applied. By computing such paths, for realistic near-ground flows, it was found that the mean
delay per reflection is T = 2.5z/o, where o, is the standard deviation of the vertical velocity at z,. The
corresponding mean alongwind displacement per reflection, due to the mean horizontal wind &(z) below z .
is & = (W | z,) 7. where (@ | z,) is the height average of & in the waiting layer. The fluctuating component
of the horizontal wind causes no mean drift but upon each reflection contributes a random drift whose root-
mean-square value is o, = 2z,. From simulations on the continental scale, with a lower boundary placed at
z, = 25 m., it was found that a typical particle suffered about 15 reflections per day, resulting in a net delay

on the order of 30 min per day.

1. Introduction

In atmospheric dispersion models, a lower boundary
separates the atmosphere into a resolved upper region
and a near-ground region that is ignored, because it is
considered to be irrelevant. This paper examines the
unresolved delays and displacements that occur while
particles are “‘waiting”’ in that neglected near-surface
layer before reinjection to the flow above—for example,
the surface delay 7 is the interval between passage of
a fluid element (particle) beneath height z, (with vertical
velocity W << 0) and its first subsequent passage above
z,, where z, is the location of the lower boundary. This
is a random variable, and its probability distribution g()
embodies physical properties of the “ground™ and the
near-ground flow, as well as the placing of z,.

The distribution of particle travel times in turbulent
flow has received little attention. Furthermore, where it
has been studied (e.g., Wilson and Swaters 1991; Wen-
zel et al. 1999), only the variability (in travel time) due
to the turbulent “interior” of the flow has been consid-
ered, not these boundary effects. Surface delays most
probably have been left unstudied because in steady-
state problems (continuous source in a stationary at-
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mosphere) the mean concentration field is independent
of the distribution of travel times: typically theories of
dispersion have been tested against such observations,
rather than against experiments with transient sources,
which demand an ensemble averaging that is never (in
the atmosphere) completely satisfactory.

Corresponding to the surface delay 7 is a random
(vector) displacement & in the horizontal which is
caused by the action of the horizontal wind during the
particle’s sojourn below z,. The customary neglect of
delays 7 in existing dispersion models may partly be
compensated by their neglect (also) of the displacements
o, but this depends in detail on (what one assumes to
be) the nature of the flow in the unresolved layer. Below
we show how to parameterize both 7 and & so as to
eliminate the implicit discontinuities of particle trajec-
tories near the boundary that otherwise exist.

2. Theory for mean surface delay

Consider a passive tracer in an atmosphere bounded
by a nonabsorbing surface at z = 0 but which is resolved
only at z = z,. The “waiting layer” spans 0 = z = z,,
and we should like to know the mean time 7 that a
particle remains below z,. once having been injected
there.

We consider a particle released at r = 0, z = z,, with
(negative) velocity w,. Following the method of Cox
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FiG. 1. Empirical probability density function (noisy line) of the normalized delay u, 7/h below
z = 2h, where h is the height of a uniform plant canopy. Constructed from N = 6 X 10°
consecutive excursions of a single particle below z = 24, as calculated by the Lagrangian
stochastic model. The delays were binned with resolution A(u, 77h) = 0.01, and the irregularity
for small (u,7/h) is due to an inadequate number N of events. The smooth line is an exponential
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pdf with mean delay equaling that of the calculated pdf.

and Miller (1965, p. 230), let P(m¢ < 1) be the prob-
ability that the time lapsed until first subsequent passage
above z, is less than t. Then (1 — P) is the probability
that at time ¢ the particle is s#ill resident in the layer 0
= gz = z,. It follows that the probability density function

(pdf) for the conditional delay 7w is

el ==y | plilmme G )
TIWgd, == 7= = PilZs ] Tps Weos Z|. 1)
g 0 a{ ar - Pu (4]
The integrand p, is the pdf for position, under the con-
dition that the level z = 0 is a perfect reflector and the
level 7 = z, is a perfect sink, that is, p, vanishes on z
= z, for all + = 0. We substitute for dp_/dt using the
mass conservation law

ap, aF,

Lo T (2)

ot 0z
where the vertical flux F, may be expressed in terms of
the joint pdf for position and velocity:

%

F.(z tlz,, wy, 0) =J wpz,wt|z, w0 dw.  (3)

Thus, because the flux vanishes at z = 0 (because of
perfect reflection), we have

—

that is, the (conditional) pdf of first passage time is given

wpa(z,, Wy t]z. wy, 0).dw, (4)

by the mean flux out of the waiting layer. The condi-
tional mean delay is

T = f 7g.(7lwy) dr 5)

=

and the unconditional mean delay is

0=
T = f ?m’"]f(wu) dwm (6)

Hp==%

where f(w,) is the pdf for w,.

A specific result for 7 demands specification of the
turbulence and the pdf (p,). The simplest case is ho-
mogeneous turbulence, for which a suitable Langevin
equation for increments dW in particle velocity (over
time step df) is

dW = —W,d—r + bdg, (7
T )
where b = (202/T;)'", o, is the Eulerian velocity stan-
dard deviation, T, is the Lagrangian timescale, and d&
is a standard Gaussian random number with variance
dt. The corresponding Fokker—Planck equation satisfied
by the joint pdf p,(z, w, t | z,, Wy, 0) is

ap, d ) 0 w . b* #*p, (8)

w - = === = == === ———

at dz = dw Tl_p“ 2 dw?
which must be solved subject to p,(z, w, 0| z,, w,.

0) = 8(z — z,)8(w — wy), with boundary conditions
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FiG. 2. (a) Mean value (symbols) and std dev (line) of the normalized delay u /i below z_ vs reflection height ¢, /h (particle released at

zfh = 10, reflecting upper boundary at z/h =

40), (b) Mean value (symbols) and std dev (line) of the normalized waiting distance 8/h

traveled below =, during a “reflection event” vs reflection height z,/. (c) Plot showing that the ratio 8/7 of the mean drift to the mean delay
is equal to the mean horizontal velocity @ | z,) in the waiting layer. (d) Std dev of the normalized lateral displacement, per reflection, from
the fluctuating ¢rosswind velocity v in the waiting layer. All of the above is for trajectories over a uniform plant canopy of height A,

of absorption on z = z, (at + > 0) and reflection on
z=10,

We now examine surface delays and displacements
numerically, by calculating trajectories in realistic near-
ground turbulence in and above a plant/forest canopy
and over smooth ground.

3. Calculations of surface delay and drift

Lagrangian stochastic (LS) models mimic atmospher-
ic dispersion by calculating an ensemble of individual,
independent particle trajectories. The form of a first-
order multidimensional LS model is (Thomson 1987):
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dU, = a(U,, X,, Ddt + b,dg,  dX, = Udt (9)

(no summation over i), where dr is the time step along
the trajectory (limited to be small relative to all pertinent
flow timescales), a, is the conditional mean acceleration,
and dé, is a Gaussian random variable (mean zero, var-
iance dr). Kolmogorov similarity determines that the
model coefficients b, = (C,£)'?6,, where € is the tur-
bulent kinetic energy dissipation rate and C, is a uni-
versal constant. Thomson’s well-mixed condition con-
strains the a; by requiring that an LS model for fluid
element trajectories should have the property that if it
is hypothetically applied to the motion of a set of marked
fluid elements that are initially well-mixed in the flow,
with respect both to position and velocity, then those
marked fluid elements must remain well mixed in po-
sition—velocity space.

Lagrangian stochastic models of the atmosphere usu-
ally resort to reflection of trajectories at boundaries—
boundaries that are always in some sense artificial. Al-
though criteria for reflection algorithms have been given
(Wilson and Flesch 1993; Thomson and Montgomery
1994; Anfossi et al. 1997), it has not been considered
important that the intervention of reflection implies a
discontinuity along the trajectory.

a. Well-mixed trajectory model for particles in
Gaussian inhomogeneous turbulence

In simulations to follow. particle velocity is [@(Z) +
U, V, W], where & is the local mean Eulerian velocity
in the alongwind (x) direction (nonzero shear stress im-
plies that U/ and W are correlated). Trajectories are gen-
erated using Thomson’s (1987) well-mixed three-di-
mensional model for Gaussian inhomogeneous turbu-
lence,' that is, turbulence whose Eulerian velocity pdfs
are joint Gaussians, with parameters varying only along
the vertical. Although velocity statistics in a plant can-
opy are non-Gaussian, neglect of third and higher sta-
tistical moments is not the most important approxima-
tion of an LS model for trajectories in a canopy (Flesch
and Wilson 1992).

The trajectories are calculated according to

dX=u(Z)+ Uldt, dY=Vdt, dZ=Wdr, (10)

where increments in particle velocity are given by the
generalized Langevin equations. Expressions for the
components of the conditional mean acceleration a, are
cumbersome and are given in appendix A. If one wished
only to calculate surface delays (but not the correspond-
ing displacements). one could drop the horizontal fluc-
tuations, U/ and V, in which case the conditional mean
vertical acceleration reduces to (Thomson 1987)

""This model is not unique, that is, it belongs to a class of well-
mixed LS models for Gaussian inhomogeneous turbulence. However,
several studies have shown that it agrees well with observations, and
Sawford (1999) confirms it is the best choice, pending development
of further criteria.
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—={— 1], (11)
ol
where o is the variance of the Eulerian vertical ve-
locity.
In the “diffusion limit,” Thomson’s model implies
an eddy diffusivity,

_ Aol + ug)
C,e

where 1, is the friction velocity, for vertical diffusion
in the neutral surface layer (Sawford and Guest 1988).
This diffusivity may be related to an effective Lagrang-
ian decorrelation timescale 7, by defining K = o2T,.
Thus, for a neutral surface layer, one may relate the
model coefficient b = (C,&)"* to a Lagrangian timescale

(12)

We carried over this identification for a canopy layer.
The formulas we used for 7, (given later) imply that
for 1D simulations [for which the term in u, vanishes
from Eqs. (12), (13)] C, = 3.2; for the present (3D)
calculations. C, = 4.5.

Unless otherwise stated, we set the time step di/T,
equal to 0.05. Trajectories were reflected at the base of
the domain, that is, at z = z, (roughness length), or, in
the case of a resolved canopy, at z = 0; they were also
reflected (downward) off an upper boundary (whose
placing had no influence on statistics of 7). Statistics of
the delays and displacement were calculated from N
(=16 000) consecutive reflections of a single trajectory.

b. Surface delays over a uniform plant canopy

Applied models of dispersion usually neglect to rep-
resent properly the flow within a canopy—and may even
neglect (omit, or improperly represent) the entire surface
layer—by applying a zero-flux boundary condition (or
trajectory reflection) some arbitrary distance above
ground. To study the consequence of that neglect, for
trajectory segments below this artificial computational
boundary? at z,, we here resolve such trajectory seg-
ments in neutrally stratified, horizontally uniform flow
through and above a generic plant canopy of height h;
that is, we track the particles as they cross below the
(arbitrarily chosen) reflection height, possibly (though
not necessarily) into the canopy, and finally back into
the “outer” flow (recrossing z, with a positive vertical
velocity W). Appendix B gives the vertical profiles of

*We do naot account for any additional contribution to 7 due to
residence in the inevitable “unresolved basal layer” (Wilson and
Flesch 1993) at the foot of the canopy—in practice. a subcanopy
layer, or leaf-litter layer. itsell’ bounded by the soil. The results of
this paper, however, suggest any “compounding™ of the delay (as
the ground is resolved on ever finer scales) should be negligible.
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Fi1G. 3. Mean value (symbols) and std dev (line) of the normalized
delay u, 7/z, below z, vs reflection height z,/z; for trajectory within
a neutral surface layer (particle released at z/z, = 500, reflecting
upper boundary at z/z, = 10°). (b) Plot showing that the ratio BT
of the mean drift to the mean delay is equal to the mean horizontal
velocity (i | z,) in the waiting layer.

Eulerian velocity statistics that we assumed for canopy
flow.

Figure 1 gives the calculated probability density func-
tion g(7r) for the case of reflection at z,/h = 2. It is
asymmetric because T is necessarily positive, and many
particles will reverse their direction and reemerge into
the outer flow without a long passage below z,. Perhaps
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F1G. 4. Mean delay in the layer 0 = z = z, of trajectories in
homogeneous turbulence (o, = 7, = 1). Symbols give 7 (and std

err in its estimation from 1000 reflections) from simulations: solid
line is the formula 7 = 2z,/ | w

only few penetrate to ground (z = 0), where they ex-
perience reflection. The empirical pdf is plotted in com-
parison with the exponential g(7) = (1/7) exp(—7/7T),
which, except for very small 7, is a reasonable approx-
imation. However the exponential has maximum prob-
ability density at the origin (7 = 0), whereas the clock
starts for a surface delay when the particle crosses z, in
the downward direction (i.e., with W < 0), and finite
Lagrangian autocorrelation (memory) implies that the
pdf must satisfy Lim,_,g(7) = 0. A log-normal pdf has
this property but is nevertheless a poorer overall rep-
resentation than the exponential.

Figure 2a is a plot of our calculated mean value (and
standard deviation) of the delay (per reflection) versus
the choice of reflection height z,. Evidently 7 = 2z /u,,,
so that it is as if the particle simply traversed the waiting
layer twice at mean velocity u, (the friction velocity
based on the shear stress at z = h). Because in the
atmospheric surface layer (above vegetation) o, =
1.25u,, we may write T = 2.5z, /0,(z,).

The corresponding result for the average downwind
displacement & during passages below z, is given by
Fig. 2b; Fig. 2c shows that 8§ = 7(i | z,), where

1 i
5 J’ w(z) dz
o T 4 Jy,

(in the present case z, = 0).

The component 8, of the waiting-layer drift per re-
flection that is due to the fluctuation velocity v’ scatters
randomly about its expected value (6, = 0). Figure 2d
indicates that root-mean-square drift (per reflection; o;,)
varies linearly with z,, a line of best fit being o, =

(14)
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1.9z, — 0.4. Of course, by the central limit theorem, as
we add together many (say, M) independent displace-
ments, each with expected value zero and rms value o,
the expected value of the net displacement (due to the
action of the fluctuation v" alone) scatters about zero
with a much smaller standard deviation o, /M'?. For
long trajectories, the influence of the velocity fluctua-
tions #', v" during the delays is negligible.

The mean delays and displacements proved to be in-
sensitive to whether they were derived from N consec-
utive reflections of a single trajectory or from N inde-
pendent trajectories from the source, each terminated
after one reflection; they varied negligibly with simu-
lation time step d¥/T, over the range 0.01 = di/T, =
0.1. We can use the results to assess the practical sig-
nificance of neglecting the delays. Suppose trajectories
are calculated with reflection at z, = 2h (=20z,); taking
h =25 m, u, = 0.25 m s°', we have that the mean
delay is 400 s, that is, almost 7 min, and the mean
displacement is about 250 m. For an agricultural canopy,
mean delay would be much smaller, say about 30 s.

¢. Surface delays in the neutral surface layver

To quantify the delays neglected in flow over smooth-
er surfaces (small z,) we again used the well-mixed LS
model (appendix A) to calculate trajectories below z,,
in a manner identical to the previous section except that
the mean wind profile was simplified to w(z)/u, = 1/k,
In(z/z,) and the Lagrangian timescale to 7,(z) = 0.5z/
o, where o, = 1.25u,,, and k, = 0.4 is the von Kdrmadn
constant. Figure 3a gives the calculated mean delay.
Again, the rule 7 = 2z /u, applies. The waiting drift
(Fig. 3b) is given very satisfactorily by 6 = 7t | z,),
so it appears this connection between 6 and 7 may be
exact, that is, independent of the particular regime of
turbulence and mean wind.

As a numerical example, in the case that roughness
length z, = 0.05 m, and if the boundary condition (re-
flection, or zero flux) is applied at z, = 5 m, then if u,
= 0.25 m s ', mean surface delay is 40 s, and the mean
displacement is about 2000z,, or 100 m.

d. Surface delay in homogeneous turbulence

The above results for the mean delay may be rewritten
as 7 = 2z,/(0.80,). Given that the mean magnitude of
a standardized Gaussian random variable is (2/m)'? =
0.80, could it be that the crucial velocity for the surface
delays is [w]| ?

To check whether this is so, we calculated 7 for re-
flection in Gaussian homogeneous turbulence. This also
provided the opportunity to examine the behavior of
7 over a wide range in the ratio z,/L of the depth of the
waiting layer to the turbulence length scale L = o, T,.
If the depth of the waiting layer is very much larger
than the length scale of the turbulent motion within it,
surface delays are the outcome of a “‘diffusion” process,

WILSON ET AL.
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whereas if the opposite is true, we have a memory-
dominated (“‘near field™") process.

In the atmospheric surface layer, the turbulence length
scale varies with height, that is, L(z) = o,(2)T,(2). It
is known that L ~ 1/2 (z — d), where the displacement
length d = 2/3 h (and so can be significant in the case
of a tall plant canopy). If z, > d, then L(z,) ~ 1/2z,,
and so it is neither true that z, => L(z,), nor is it true
that z, < [(z,); statistics of surface delays are probably
influenced by memory of the entry velocity.

In homogeneous turbulence, an artificial situation pre-
vails, and one can make the adherence layer 0 = z =
z, arbitrarily large with respect to the (constant) length
scale. Figure 4 gives the calculated mean delay for wait-
ing layers whose depth spans the range 0.01 = z /(o T,)
= 10. For these calculations, the time step was set to
dt = 0.02 min(7',, z,/a,). The mean delay T agreed with
the estimate 7 = 2z,/ | w | , even for z,/(o,, T, ) as small
as 0.04, that is, the difference between the formula and
the computed mean delay did not exceed the standard
error of the mean (o, standard deviation of the N es-
timates of 7 divided by N'?).

4. Surface delays in continental-scale transport

Are these surface delays and drifts worth accounting
for, in time-dependent dispersion problems? The Ca-
nadian Meteorological Centre has implemented a long
range, first-order LS model,? coupled to the resolved
velocity fields of a global weather analysis/prediction
model (the Canadian Global Environmental Multiscale
model). Using that model, we simulated the European
Tracer Experiment (ETEX) of 1994 in which tracer gas
was released near Rennes, France, and the time series
of concentration of that gas was reported over the fol-
lowing days from stations covering Europe and Western
Asia. The paths of 10 000 particles, released over the
12-h source duration (1600 UTC 23 October—0400UTC
24 October), were tracked for the succeeding 57 h; upon
each surface reflection, we imposed delay 2z /u, and
displacements &, = 7@ | z,), 6, = 7(¥ | z,), where the
local friction velocity u, and the near-ground winds i,
v varied geographically and temporally.*

When trajectories were reflected at z, = 10 m, on
average during its flight (of order 50 h) a particle ex-
perienced about 30 reflections, the average delay per

' Thomson’s well-mixed 3D model for Gaussian inhomogeneous
turbulence but with terms due to nonstationarity and local (horizontal)
inhomogeneity of turbulence statistics neglected. The time step Ar
along trajectories was held constant (i.e., height independent) at a
value chosen in relation to the reflection height z,; to be specific, Ar
was required to be small relative to 1/2 z,/u, the latter representing
the minimum value of the Lagrangian timescale. which occurs at the
boundary.

" We derived a formula for (& | z) by integrating the composite
mean wind profile of appendix B, from z = 0 1o z = z,, with the
further assumption of an effective canopy height # = 10z, calculated
from the roughness-length map employed in GEM.
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FiG. 5. ETEX plume position at 1500 UTC 24 Oct 1994, 11 h after
the source was turned off, as indicated by the 0.5 ng m ~* concentration
contour. Long-dashed line: z, = 2 m, time step Ar = 0.2 s, surface
effects (7, &) neglected; solid line: z, = 25 m, Ar = 2.5 s, surface
effects (7, ) neglected: short-dashed line: z, = 25 m, Ar = 2.5 4,
surface effects (7, §) parameterized.

reflection being about 40 s; thus, very roughly, 15 re-
flections occurred per particle per day, causing a net
delay of about 10 min day'. The mean magnitude of
the surface displacement was about 150 meters per re-
flection, resulting in a net displacement on the order of
1 km day ' (direction of the displacements varies with
surface wind direction). If the trajectories were instead
reflected at z, = 25 m, the average delay (displacement)
per reflection increased to about 130 s (600 m), but the
mean number of reflections (per particle per day) was
virtually unchanged; in consequence, the net daily delay
increased to about 30 min.

Figure 5 compares three simulations of the ETEX
plume, giving a view of the (.5 ng m * concentration
contour, 11 h after the source was turned off. Owing to
a more than tenfold increase in time step permitted,
computation time is dramatically reduced when reflec-
tion height is increased from z, = 2 m (reference sim-
ulation at high resolution, Ar = 0.2 s) to z, = 25 m
(low-resolution/high-reflection simulation, At = 2.5 s;
surface delays uncorrected). Plume position, however,
is degraded in the low-resolution calculation, most no-
ticeably at the trailing (last arriving) edge of the plume,
and by on the order of 10-20 km. As Fig. 5 shows, that
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deficiency is mitigated by parameterizing the mean sur-
face delays and displacements.

5. Conclusions

No description of atmospheric transport will resolve
motion on all scales, indefinitely close to the surface.
Thus, in modeled trajectories there will always be a kind
of discontinuity in which trajectories are reflected back
to the interior of the flow; similar discontinuities are
implicit in Eulerian models.

We calculated the neglected surface delays and drifts
when particles passed below a nominal lower bound-
ary, placed arbitrarily (at height z,) within a horizon-
tally uniform surface layer. We did not address the fact
that, as the wind blows over fields. forests, and cities,
particles will also temporarily be *“lost’™ into wakes of
windbreaks, urban canyons, forest clearings, and so on.
According to our idealized calculations, mean delay
per reflection 7 = 2.5z /o, (where o, is the standard
deviation of the vertical velocity at z,) and mean along-
wind displacement per reflection § = (i | z,) 7, where
(| z,) is the height average of @ in the waiting layer.
Net surface delays in continental-scale dispersion are
neither dramatic nor negligible (on the order of 30 min
day~' for reflection at 25 m), and the delays and drifts,
if both are neglected, do not compensate for each other.

These effects could also be parameterized in Eulerian
models: one could add, below the (original) lower
boundary z,, an additional layer whose depth and eddy
diffusivity would be adjusted to imply the desired mean
residence time T and whose horizontal velocities would
be specified as (@ | z,), (¥ | z,).

Acknowledgments. Financial support of the Natural
Sciences and Engineering Research Council of Canada
(NSERC) is acknowledged. We thank the referees and
Dr. B. L. Sawford for comments on this work.

APPENDIX A

Lagrangian Stochastic Model

The components of the conditional mean acceleration
for Thomson’s well-mixed 3D model for the Lagrangian
velocity fluctuations in horizontally uniform, stationary
Gaussian turbulence are

1 au'w'
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In the current simulations, for which it was assumed
that v'w' = 0 and that o2 = ¢, o? oAoiol —
w'w' ou'w').

APPENDIX B
Normalized Velocity Statistics for a Generic
Plant Canopy

We specified the profile of mean wind speed as

/ Z
Mexp B(H — I), z=<h
az) |
U al) - L log £ —d : z>h
Iy k, h—d

where the friction velocity u,, is based on the shear stress
at z = h, the von Kdrmdn constant &, = 0.4, and the
displacement length d/h = 2/3. The extinction parameter
B, may be defined in terms of the ratio of the wind
speeds at z = hand z = (O:

u(h)luy,
w(0) /1y |
where we set [w(i)uy, w(0)u,] = (3.0,0.15) so that B,

= 3.0. For the standard deviation of the vertical velocity,
we wrote

B” =

o, (h) z .
FEo ] 1 z =}
a.(2) _ | uy g ﬁ""(h ) .
Wi
a,(h)
—, z>h,
Uy, !

where [ (M)/uy, o (0)/u,] = (1.25,0.3) so that B

(il

1.43. The same form was used for o, (assumed to be
equal to o) with [o,(h)/uy. o (0)/u,] = (2.0, 0.5), and
similarly the normalized shear stress was constant (equal
to —u3) above the canopy, with an exponential extinc-
tion in the canopy to a value on ground of
—0.03uz(B,; = 3.5). Last, the Lagrangian timescale was
specified as

0.3,

= h

(&

upd;(z) _
T 2 0.5(z/h — dIh) ‘

7=
O-n'/u*

[a calculation with u,, oh = 0.3(z/h)/0.15 for z/h = 0.15
yielded a negligibly different outcome].
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