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SUMMARY

To calculate disturbed wind flows in plant canopies, we studied a variant of the K oc Ak'/? first-order closure
(where K is the eddy viscosity, & is the turbulent kinetic energy calculated from its simplified governing differential
equation, and A is an algebraic length-scale). We compare numerical solutions using this closure (which admits
only three empirical constants) with earlier observations of mean wind, shear stress, and turbulent kinetic energy
in three, quite different, uniform canopy flows, and in disturbed canopy flow over a ridge. The closare performs
as well as or better than the solutions of others based on modifications of the ‘k-¢’ closure, where ¢ 15 the rate of

dissipation of k.

KeyworDs: Boundary laver Orography Turbulence Vegetation

1. INTRODUCTION

Arguably the most important scientific challenge facing micrometeorology, is to im-
prove our understanding of, and means to calculate, the spatial variation of the turbulent
wind flow over complex terrain. This is necessary not only to improve surface parametriza-
tions within larger-scale models, but also to make advances in related applied sciences,
such as air pollution, hydrology, and forestry. From the perspective of numerical fluid
mechanics and the governing conservation equations, the fundamental problem is that
of ‘turbulence closure’. This work arose from our exploration of the following question,
prompted by the wind-tunnel experiment of Finnigan and Brunet (1995)—what is the
simplest turbulence closure that will adequately describe changes to the mean wind field,
particularly very close to the ground, in flow over hilly, forested terrain? The possibility
of interpreting the spatial pattern of tree ‘windthrow’ (e.g. Wilson and Flesch 1996, who
studied turbulence and remnant tree motion in forest clearings of varying widths) illustrates
the value of being able to model such flows.

Finnigan and Brunet studied changes to the mean wind and turbulence in flow through
a model plant canopy on a wind-tunnel ridge (*Furry Hill"). Striking gualitative differences
were observed between the shapes of the mean wind profiles, U (z), at different points on
the ridge. In the case of a canopy on level ground, U(z) is characterized by strong shear
near the canopy height (z = 4.), and an associated inflexion point in the wind profile. But
on the upwind slope of Furry Hill that inflexion point was weak or even absent, while at
the hilitop it was markedly accentuated. Eddies originating from the inflexion-point wind
profile are an important component of canopy turbulence (Raupach et al. 1996), and so
these disturbances of the form of the wind profile mn flow over a forested hill may be very
important. In any case, the Furry Hill observations determined a pattern of mean wind
variation that a useful closure must capture.

Our first step was to extend the Jackson—Hunt (1975) linear analytic theory to cover
this case, by adding a canopy layer beneath the inner layer. But upon testing that calculation
against the Furry Hill observations we found the assumption of small disturbances was
mvalid. We therefore embarked on nonlinear numerical solutions, and the bulk of this report
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describes a variation, applicable specifically to canopy flow, of the familiar K oc Ak'/?
first order closure (where X is the eddy viscosity, & is the turbulent kinetic energy (TKE)
calculated from a simplified governing differential equation, and X is an algebraic length-
scale). Using this closure, we will demonstrate good agreement of numerical solutions with
observations of three, quite different, uniform canopy flows, and encouraging agreement
with the Furry Hill observations of flow over a ridge.

But it will occur to many readers that our use of a first-order closure for disturbed
canopy flow begs strong justification! We will review the context of our choice, acknowl-
edging at the outset our preference for simplicity in a scientific model. There is some
consensus that first-order closure suffices to explain changes to the mean flow well above
the canopy (indeed, this is implied by the success of the Jackson—Hunt theory). According
to Ayotte ef al. (1994, page 30), ‘mean-flow over hills generally shows only a weak sen-
sitivity to the concomitant turbulence field’; and from Ying et al. (1994) we have that ‘It
has been shown in many studies that in steady-state, neutrally-stratified ABL* flow over
topography, the mean velocity changes are relatively insensitive to the turbulence closure
scheme’. However K-theory is consideted unable to explain the observed changes to
the turbulence over a hill, even above any canopy: thus (Taylor ef al. 1987, page 112)
‘subtleties of the turbulence model are of importance to the turbulence structure but
appear to have little influence on the mean flow’.

Will these findings hold true within a canopy on a hill? Several factors render canopy
flows among the most complex so far studied: extreme vertical inhomogeneity of the ve-
locity statistics; the strongly nan-Gaussjan nature of those statistics; domination of the
transport process by occasional energetic ‘sweeps’ of air from above; and distributed
source/sink distributions for momentum, heat, water vapour (etc.) that imply source terms
in the governing equations for statistics of any order. The impact of this complexity of
canopy flow on the applicability of K-theory is severe——in a plant canopy mean fluxes
are observed sometimes to be directed against the corresponding mean gradient (e.g. Den-
mead and Bradley 1985). This is understood (Raupach 1987; Wilson 1989) to be due
to the action of the energetic ‘large’ eddies, with length-scales of the order of the canopy
height, on a vertically extensive source distribution. Raupach (1987) adopted a Lagrangian
viewpoint to show that the effective eddy diffusivity at a point in the canopy flow had a
‘diffusive’ contribution, representing the flux from sources at distances exceeding the local
Lagrangian integral length-scale, and a ‘non-diffusive’ contribution from nearby sources.
The non-diffusive part of the eddy dszusmty was generally quite a small perturbation on
the diffusive part, but was sufficient to produce the observed counter-gradient transport,
given a conducive source distribution. Of course, counter-gradient transport cannot be
entertained within K -theory.

In the Eulerian framework, non-local, non-diffusive behaviour can be reproduced by
higher-order closures (there remains in principle the difficulty that such models invoke
gradient diffusion at a higher order). To this end Wilson and Shaw (1977) and Wilson
(1988) calculated canopy winds using second-order closure, while Meyers and Paw U
{1986) introduced a third-order closure. Even for a uniform canopy, this results in consid-
erable complexity; although, if for no other reason than the introduction of many closure
coefficients, it is possible to match quite arcane details of measured flows.

In the present work it seemed reasonable as a first step to explore K -theory, ignoring
the non-diffusive, non-local part of the diffusivities and relaxing our expectation that the
resulting description should work well at every point of the flow, in favour of reproducing
the overall character of the flow with minimal complexity. We were inclined to over-
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look details such as the TKE partitioning (o*:07:072) and to avoid complicated turbulence
schemes, however popular, whose basis is especially weak in the case of a canopy flow
(e.g. the e-equation, where ¢ is the rate of dissipation of TKE).

Now in what is to our knowledge the only previous computation of disturbed canopy
winds on a hill, Kobayashi et al. (1994) compared wind-tunnel simulations with calcula-
tions using the first-order ‘k-¢” closure. The ‘standard’ e-equation (Launder and Spalding
1972) provides a ‘successful’ length-scale k**/¢ in many simple flows, but, in view of
what is known about TKE transformation/dissipation pathways in a canopy (Shaw and
Seginer 1985; Wilson 1988; Kaimal and Finnigan 1994, page 97), it is hardly surprising
that the standard e-equation resulted in a poor calculation of the measured TKE and shear
stress.

Svensson and Haggkvist (1990), Green (1992), Kobayashi ez al. (1994) and Liu ez al.
(1996) have described similar modifications of the k-¢ model, to account for plant drag.
However such k-e closures give predictions that are sensitive to details of ambiguous
choices (e.g. Liu et al. Fig. 9) and are, at best, of a quality comparable to those of the
present, simpler scheme. Thus rather than modify the €-equation, we preferred to impose
a length-scale that reflects the known characteristics of canopy eddies. Although we agree
with Ying ef al. (1994, page 402) that ‘there is little evidence to support the belief that
the length-scale specifications used in one-equation models (where only the transport
equation for turbulent kinetic energy is solved) are sufficiently universal for (separated,
recirculating) flows’, we contend (and indeed prove) that in the present context a rationally
formulated length-scale will equal or outperform an inappropriate €-equation. Please note
though, that we have not sought here to treat any leeward separation region.

This ends our ‘justification’ for using K -theory, and our particular version of it. We
now outline a K o« AkYZ closure which, as we use it, admits three unknown coefficients.
These we have determined by optimising agreement of calculated mean wind (U), shear
stress (7), and TKE (k) profiles with those observed in the equilibrium canopy flow upwind
of Furry Hill. Without alteration those values also resulted, as we will show, in quite good
simulations of other very different uniform canopy flows, and of the disturbed wind and
turbulence in and above a canopy on a hillside.

2. (GOVERNING EQUATIONS

We used simplified governing equations for a neutrally stratified boundary-layer flow,
in which velocity statistics are invariant along the crosswind (y) direction (2-dimensional
mean flow). Our focus is wind in a plant canopy, and so our interest is in the surface layer.
However, much of the available data are from the wind-tunnel, wherein the constant-stress
layer above the canopy is shallow, or even non-existent. Thus we allowed a background
along-wind pressure gradient, to balance any vertical gradient in above-canopy shear stress
3. (w'w') (v and w' are departures from the mean horizontal wind U and mean vertical
velocity W; and () denotes an average), and also to account for vertical variation in TKE
above a uniform wind-tunnel canopy. TKE (k) in our treatment represents the kinetic
energy of eddies in a spectral range that excludes the small, wake-scales (that are rapidly
dissipated). Thus, in the canopy, drag on plants operates as a net sink for TKE.

Governing equations applicable to both uniform and disturbed terrain can be derived
by a transformation of the usual momentum equations (under the Boussinesq approxima-
tion) into non-orthogonal, terrain-following coordinates (x, z), where z is height above the
local terrain surface, the absolute height of which is written A(x). U/ and W are retained
as the dependent variables (i.e. velocities are referred to fixed Cartesian axes), but it is
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convenient to define:
W* -4_- W —h U, 1)

where 4, is the derivative of 2 with respe:étt to x. W* is the difference between local vertical
velocity and the projection of the horizontal velocity onto the local normal to the hill. For
reasons which will become clear later, we did not transform the z-axis in the way that is

often done to achieve an upper coordinate surface which is horizontal. In terms of W*, the
continuity equation may be written:

alu " aw*
Bxi 2z

=0. 2)

The momentum equations, written in traiilsp{}rt form (which is advantageous for ensuring
proper conservation in the numerical integrations to follow), are:

d P 8
U o A P)+ (WU + Ww) = —(halof + P) + 5, (3)

and
Jgu'w’y 0
3z dx

0 3 d
—(UW* + (W) + —(W* + 02+ P)=h, (h U — —(h W*U).
X dz gz

(4)

Here P is the mean kinematic pressure, ¢, is the variance of the total horizontal velocity
U + u’ about the mean (I/); o2 is the variance of the total vertical velocity W + w’ about the
mean (W); and (#’w'} is the turbulent kinematic shear stress (t). The source term S, (x, z) =
—c4(2)a(x, z)U|U| parametrizes drag on vegetation; c4(z) is a bulk drag coefficient, and
a(x, z) is the plant area density. The left-hand sides of these equations preserve the form
familiar in Cartesian coordinates, but there are extra terms on the right-hand sides (r.h.s.)
arising from the transformation, which we shall shortly drop.
We also used a transformed (and simplified) TKE equation:

9 8 14
o UE) b o (W) = —{tf' w0V — + PT, — €. 5
ax( )+32:( ) {HW)BZ‘F ¢ = € (5)

PT, represents the sum of the pressure§ and turbulent transport terms; € is the rate of
dissipation of TKE; and we have simplified shear production.

In the wind flow simulations to be reported, the pressure gradient was either frivial
(uniform canopy flows) or, in the case of the Furry Hill experiment, provided. Thus we
will make no further use of the W-momentum equation; vertical velocity can be eliminated
using the continuity equation.

(@) Inadeqguacy of linear treatment

Jackson and Hunt (1975; hereafter JH) provided an analytical theory of the disturbance
in mean wind speed that occurs when a neutrally stratified boundary-layer flow encounters
a low, smooth ridge. Despite its restriction to small disturbances, this work has played an
important role in interpretation of observations, and has permitted a deeper understanding
of ‘hillflow’ than available from numerical solutions; e.g. JH contributed the simplifying
concept that the hillflow is comprised, in essence, of two layers: a highly-sheared, near-
ground stream; and above that an irrotational, inviscid outer stream, whose blockage by
the hill sets up the pressure field driving the inner layer.
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As potentially the simplest description of wind changes in a canopy on a hill, we
explored a number of ways to add a canopy layer below the base of the JH inner layer.
Briefly, this involved a displacement of the height coordinate (z — z — d), and the intro-
duction of matching conditions at canopy height z = 4. between the canopy layer and the
JH inner layer. Requirements of continuity of the wind speed and shear stress across A,
in effect replaced the lower-boundary conditions of the JH treatment. We linearised the
momentum budget of the canopy layer, by introducing an exponential background wind
orofile Us(z), and we assumed a height-independent mixing-length, Aq, within the canopy
(Ao turned out necessarily to also be independent of x, for proper matching to the JH inner
layer). These solutions did not agree very well with the observed winds in the canopy on
Furry Hill. The basic difficulty can be revealed by considering the force balance deep in
the canopy.

Vertical coupling in thin shear flow is primarily due to the turbulent vertical momen-
tum flux, 7, which as is well known does not penetrate deeply into a dense canopy. Thus
the flow in the base of a deep, dense canopy is vertically-decoupled from the flow aloft (of
course the flow deep in the canopy is ‘advectively’ coupled, 1.e. in regions where 07 /32
is small, the deep-canopy flow reflects advection from regions where the coupling was
strong). Under such conditions the mean momentum budget deep in the canopy is:

al/ aP
U v e ——— — eaqU | U], (6)
0x dx

and the wind speed U (x) is accordingly determined by the pressure field. In the absence
of advection, this reduces to the balance between pressure gradient and drag proposed by
Holland {1989) for the base of a deep, dense canopy.

Does Eqg. (6) explain the observed wind variations deep in the canopy on Furry Hill?
The wind-tunnel ridge had topographic contour:

By = — 1 )

-

where H is the hill height and L the hill half-length (a ‘Witch of Agnesi’ ridge). For that
case the JH solution for the pressure field in the inner layer 1s: |

2
() -

) , (8)
20 y X )2

()

where &, is von Karman’s constant and .4 is the upstream (equilibrium) friction velocity.
Figure 1(a) compares the observed pressure over Furry Hill (L =0.42 m, H = 0.15 m)
against the JH pressure field for a hill of effective height H' = 0.08 m (the JH solution for
the actual ridge predicts a more extreme pressure variation than was observed). While Py
underestimates the adversity of the observed pressure gradient at x /L < —1.5, it maiches
well the overall pressure fall at hilltop. The very strongly adverse 3, Py leeward of hilltop
would cause prompt reversal. It 1s not seen in the Furry-model flow for precisely that
reason—the model flow featured a large separated region behind the crest.

Figure 1(b) compares the variation {(on the upwind face of the hill) of the observed
winds in the canopy at z/ s, = (0.17, 0.5) against numerical solutions U (x) to Eq. (6), or
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Figure 1. (a) Comparison of observed mean presaﬁrﬂ (», normalized on pu2, ) over Furry Hill (L =042 m, H =
0.15 m), with the JH theoretical pressure field Pig(x) for the inner layer on a ridge with scales L = 0.42 m,
H =008 m, zp = 0.0036 m. (b) Mean wind speeds U /1,y observed in the canopy on Furry Hill, versus solutions
U(x) of a nonlinear, one-dimensional U/-momentum budget that includes only canopy drag, forcing pressure
gradient, and advection. Also shown (light solid lines) are a family of solutions of the linearized one-dimensional
budget. All solutions are ‘driven by’ the pressure field Py of Fig. 1(a}, and use cgal == 2.86, the observed value.
The nonlinear solutions are pinned to the observed far-upstream deep-canopy wind (Us /i, = 1, 1.5). The family
of linearized solutions used Uy /fuy = ({} i 0.75, 1.0, 1.25, 1.5). See text for further expiaﬂaﬁﬁn

rather a slight modification of it:

U 3P 02U
U === —caaUIU| = U) + K*——.

0x ox ©)

cqaUZ is a background stress gradient; in its absence, this model cannot reproduce the
observed far-upwind deep-canopy wind. The artificial diffusion term (K*/u,4L, set equal
to 0.001) merely suppresses computational instability. From the reasonable agreement
of the nonlinear solution with the observed wind, it is evident that the flow deep in the
canopy is indeed virtually decoupled from the flow aloft, as others have suggested. In fact,
where the pressure gradient is large on Furry Hill one may neglect advection, and obtain a
good estimate of the deep-canopy mean wind speed algebraically from the known pressure
field—as suggested by Holland (1989). Froml the form of Eq. (6), Finnigan and Brunet
(1995) reasoned that within the canopy, due to the drag on plant parts, there is constant
readjustment of the wind towards equilibrium with the pressure field, with distance constant
(caa)~!. In contrast, above the vegetation the lack of damping permits freer response to
V P and, according to Finnigan and Brunet, this is the cause of the changing magnitude of
the wind shear at canopy top.

Returning to our main point, also shown on Fig. 1(b) are a family of solutions for
U (x) that result upon linearization,

Ux)=Up+ U'(x), (10)

where U’ is the mean wind perturbation induced by the hill, and U, is the approach speed.
The linearized solutions overestimate changes in the wind near the ground. Thus the wind
changes in the plant canopy on Furry Hill demand a nonlinear treatment.

(b) Closure

As we emphasized earlier, our intent was to uncover a simple but workable closure
for disturbed canopy flows. Thus we use K -theory, which we write down in the form given



FIRST-ORDER CLOSURE FOR PLANT-CANOPY FLOWS 711

by Monin and Yaglom (1977; section 6.3) for arbitrary 3-dimensional flows:

2 au;  au;
(uju}) = 5&5 K( + f), (11)

axj 3I§

where §;; is the Kroneker delta. This scalar-viscosity closure, whose merit is correct sym-
metry, 15 often modified (introducing empirical parameters such as c, below) to permit
distinction between the normal stresses in an undisturbed flow, viz.

aU
(%) = ek — 2K~ (12)

The concept that (') is controlled by U-inhomogeneity has little to recommend it. In
any case, experimental evidence suggests that in most disturbed thin shear-layer flows (i.e.
flows wherein shear strains > normal strains) normal stress gradients play a much smaller
rote than shear stress gradients. Their inclusion via the above closure does have the purely
computational advantage of providing diffusion terms. For simplicity, and in view of the
weak basis for Eq. (12), we neglected the normal stress gradients; also, because vertical
shear is dominant in thin shear flow, we simplified the shear stress closure to:

144
w') = —K——. (13)

To ensure numerical stability, we added diffusion terms where diffusion was otherwise
absent, We regard these as artificial, and signify the artificial diffusivity as K, which is
very small.

(¢) Parametrization of eddy viscosity
For reasons indicated in the Introduction, we chose to specify the eddy viscosity as:

K = A(x, DvVck(x, 7), (14)

where k was obtained from the szmphﬁed transport Eq. (5), and the length-scale A(x, z) was
specified algebraically. The constant ¢, is the cquﬂlbnum shear-stress/TKE ratio (u2,/ ko)
immediately above the canopy, which if evaluated in the local equilibrium region varies
only slightly from one wall-shear layer to another. We defined an eddy diffusivity K; = u X
to parameterize the transport term P7, in the TKE Eq. (5).

According to Launder and Spalding (1972), this ‘one-equation model of turbulence’,
which has been used widely (e.g. to calculate flow over hills, Taylor 1977), originated with
L. Prandtl in 1945 and, ‘in most circumstances, one-equation models are only marginally
superior to Prandtl’s mixing-length model’. However, that assessment derives from studies
of turbulence typical of engineering flows: wall-shear layers; decaying homogeneous tur-
bulence; jets and wakes. In our more complex case of a canopy flow, involving form drag
and terms of similar origin in governing equations for all statistics, we preferred to keep
an open mind on the issue, and to proceed from a simple starting point. The more complex
first- or second-order closures preferred by Launder and Spalding introduce numerous
closure coefficients, and in their application to canopy flows it is difficult to differen-
tiate profoundness of the set of closure assumptions from mere flexibility due to those
coefficients. Of course, we recognise the principle that the constants of a closure, once
established by optimization with respect to simple test flows, should be left unchanged in
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their application to more complex flows. However, as we indicated earlier, popular engi-
neering closures, such as the k-e model (Launder and Spalding 1972) or the second-order
closure of Launder er al. (1975), both of which include an ¢-equation to relieve the need
for specification of a length-scale, will not carry over to canopy flows without modifica-
tion. This is because of the extra processes involving vegetation drag (witness the rather
poor performance of the model of Kobayashi et al. 1994). And while the mechanisms of
production, destruction and inter-scale transformation of TKE in a canopy are partially
understood (Shaw and Seginer 1985; Kaimal and Finnigan 1994, page 97), we do not yet
have a meaningful e-equation for canopy flows. Thus our preference is for an algebraic
parametrization of the length-scale and of the sink (¢) for resolved-scale TKE, to avoid
proliferation of closure constants, and ‘black-box’ equations.

In specifying the length-scale, we wished to reproduce the observed characteristic
(Kaimal and Finnigan 1994, Fig. 3.13) of a constant length-scale across much of the upper
canopy (A < k,h., where k, = 0.4 is von Karman’s constant), and some distance above
‘but near the canopy an ‘inertial sublayer” wherein A oc (z — d), d being the displacement
height. As a result of our analytic treatments of the canopy on a hill, we wished also to
allow the length-scale to (raahstlcally) vanish on the ground, i.e. as z/ k. — 0. Thus we
wrote A = max(A;, A,), where: |

11 11 1 1
- i —_— d _— Lk . 15
A I W Wl (15)

The ‘outer’ scale A, recognizes the displacement (of equilibrium structure) due to the
canopy and, through the imposed limiting (i.e. maximum permitted) value L, the fact of
a restricted depth to the inertial sublayer in a wind-tunnel boundary layer. In the case of
a deep constant-stress layer, e.g. in our simulations of the Elora field data (Wilson 1988),
we set L, = co. The ‘inner’ scale A; recognizes both the limitation imposed on eddy size
by proximity to the ground, and the presence of the canopy. Raupach et al. (1996) have
suggested that the strength of the wind shear at “canopy height* is critical to eddy transport
within a canopy, defining a ‘shear length-scale’:

Uk (16
- @U/32),
Accordingly we specified the upper ljmzt to the ‘canopy’ length-scale either as:
Ae=cLs, (17)

or as.
. -1

he = cL* = c/k(hy) (w) , (18)

ﬂz b

where L} is an alternative length-scale; in either case, ¢ is an unknown constant of pro-
portionality, or ‘closure constant’, which we will subsequently determine. Equation (18)
has an advantage in principle over Eq. (17), in that in the limit of a very sparse canopy,
it specifies A.(h.) x k(A — d), whereas Eq. (17) has a less elegant low canopy-density

* Raupach ef al. suggested s, might be unambiguously defined as being the height (hy) of the inflection-point
of the mean wind profile. Within our treatment and closure there is no compalsion to define canopy height as
that height (k) above whick plant area density vanishes, although we have done so for all simulations repazted
here. The suggestion that one defines b, = ki, can, and probably should, be accommodated in cases where Aj, is
distinctly lower than A,y (e.g. the Rivox spruce canopy, wherein k;, occorred at approximately the median tree
height; Gardiner 1994).
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limit. In all simulations to be shown here we have used Eq. (18). However there is no
decisive advantage to using k1/*(h,) instead of U (h.) as the velocity-scale for defining L,.
Our findings can be reproduced using Eq. (17), though with ¢ ~ 0.5 rather than ¢ = 1.0,
the latter value resulting from the calibration to follow.

The TKE dissipation rate was written as € = max({€.., €) where:

(Cek)?

€cc = T € = acgalk. (19)

The term ¢, is the standard parametrization for viscous dissipation, the only TKE sink
above the canopy (e, balances shear production of TKE, in the local equilibrium layer
well above the canopy). Our specification for € (‘form drag’), which converts resolved
TKE to the small, rapidly dissipated ‘wake-scales’, can be justified on physical grounds
(e.z. Wilson 1988). We expect a is O(1}, but its exact value depends on the partitioning of
k among the components (&', v’, w'), and on the spectral division of TKE into our resolved
band (k) and the irrelevant band of finer wake-scales.

We will henceforth use the equations in non-dimensional form, using for scales 1., and
the friction velocity u.q derived from the equilibrium shear stress at z = k.. The governing
equations for U and % in terrain-following coordinates, incorporating the simplifications
above, and omitting the superscript on our ‘vertical’ velocity, are:

J 5 al/ J al/ apP
— — K, — — —K— = c , 20
o (U 8;r)+ » (UW Bz) ™ cqah U U] (20)
d 9k d ok al/
— | Uk — K;— — | Wk — K-} =17— — €, 21
ax ( Eix) T a2 ( “ Bz) t 0z € (1)

where K, is the artificial diffusivity, Comparing with Eqns. (3) and (5) it will be noted that
we have dropped several terms arising from the coordinate transformation (i.e. those that
vanish as slope & —> () despite our later application of these equations to a hill with slope
8 ~ H/L ~ 0.4. Inclusion of those terms is easy, but had no noticeable impact.

(d) Grid, boundary conditions, discretization and iterative solution

We used a staggered grid that defines abutting control volumes for U and % (Fig. 2).
To avoid questionable specification of the stress on the ground beneath the canopy, we
placed the lowest horizontal velocity gridpoint on the ground (direct imposition of the
no-slip condition), which allowed us to impose naturally the condition that at the ground
the vertical flux of TKE should vanish. Conversely, we set the uppermost U gridpoint in
a normal, full, control volume, bounded by the top of the computationai domain, so that
the upper-boundary condition on U was a specified shear stress. Since a & gridpoint lies
on the upper boundary, either (in the case of a field simulation) we specified its value
there directly (k = 1/c.), or (in the case of a wind-tunnel) we required 3,k = 0. In the two-
dimensional preblem we calculated inflow profiles Up(z), ko(z) as equilibrium solutions
of the governing equations (more on this below), while at the outflow boundary we set
0, (U, k) =W =0.

Our numerical procedure is a variant of the well-triecd ‘SIMPLE’ (semi-implicit
method for pressure-linked equations; Patankar 1980). To discretize the governing equa-
tions, i.e. to obtain algebraic (‘neighbour’) equations from the partial differential equa-
tions, we firstly integrate analytically within a {general) control volume. In that integration,
transport terms reduce to influxes/effluxes across control-volume faces (thus our choice
of transport form for the equations); the precaution of symmetrical estimation of such
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Figure 2. Control volumes and positions of (stﬂiggﬂzad) gridpoints for mean horizontal and vertical velocity
(U, W), pressure (P), and turbulent kinetic energy TKE (k); set up for numerical integration of the U/-momentum
and TKE equations.

fluxes on either side of the face ensures conservation of all properties, in the absence of
source/sink terms. |

Let us look at equilibrium solutions of the governing equation, presented later as
simulations of the flow in a uniform canopy, and also used as inflow profiles for the
disturbed-flow problem. We discard x-derivatives (except of pressure) in Eq. (20), thus for

{: :
3 all agP
gy 2 | 22
3z( 8z)  — cah U] (22)

In a 1-dimensional problem, i.e. uniform-canopy flow, the pressure gradient we include
above represents any background force present and manifest as a departure of the flow
from the idealization of a deep constant-stress layer, such as we consider the undisturbed
atmospheric surface layer to be. For example, in a wind-tunnel the effective background
force would be a pressure gradient, and/or streamwise advection.

Integrating Eq. (22) with respect to z between z; and z5:

HIAR 3P
K = Az -2 — cyan, ,
[ > L z( S = Cad UiUl) (23)

where Az = z, — zy. The original transport term, now reduced to the difference between
the momentum flux across the upper (z») plane and the lower, must be estimated by
interpolation from values of U (and k) at nearby gridpoints. Let U” be the mth (iterative)



FIRST-ORDER CLOSURE FOR PLANT-CANOPY FLOWS 715

guess at the solution for U at U-grid position z;. Then the simplest choice is:

aly ur, - ur
(K—) = K (z,)~2—1 (24)
BZ =72 ﬁZ”

where Az, is the distance between the jth and (j + 1th U-gridpoints, and where K (z3),
the eddy viscosity at the top plane, will involve our coupled estimate of TKE at that
position. Writing U |U | = U |U j”‘“lf s0 as to obtain a linear algebraic equation coupling
the neighbouring velocities (’ j —1, j, j + 1) upon the mth iteration, and collecting terms:
ALU™ = ALU™ 4 AlU™ — Az (25)

cY; T ANY 4 sV Zax’

where the “North’, ‘South’ and ‘Central’ neighbour coefficients are:

o Az k™ 1(z2)

Al 26
N Azl (26)
o Az ck™ 1 (zy)

Al = , 2
5 Az (27)

Al = Al + AL + cqah JUM. (28)

Of course, special equations prevail on both ends of the z-axis (boundary conditions), while
equations of corresponding form link neighbouring values of £. For given matrices k}"_l

and U (the “prior’ guess) this constitutes a closed tridiagonal matrix problem for the
unknown matrix U}", and may be solved by tridiagonal matrix inversion (for a numerical
subroutine see Patankar 1980). Provided some relaxation is provided, i.e.

U;u-i_l "E“{IRU?MI e (1 h {HR)UJTH, dp < L (29)

where <« is to be interpreted as the operation of replacement, this coupled iteration in
U, k will converge.

The discretization 1n two dimensions 1s analogous, the only complication being the
simultaneous presence of convection and diffusion along x (and 7 in a disturbed problem).
Consider a vertical face at x = x; between the control volume for U; ; on the left and U, ;
on the right, a boundary across which we will need to specify the total (convective + diffu-
sive) flux, (UU — K,90,U),...1. Various possibilitics exist for the necessary interpolation;
we used Patankar’s ‘power-law scheme’, although since our K, is small (implying large-
grid Peclet number, P. — U Ax/K,), 1n practice this reduces to an ‘upwind’ treatment of
convection, which eclipses diffusion (along the x-axis). |

The neighbour equations involve U; ; and its four neighbours. We solved those equa-
tions iteratively, setting up matrix Inversions that were alternately “direct’ along z and
along x. A hillflow situation required approximately 30 s on a Pentium 1l PC.

3. EXPERIMENTAL DATA FOR UNIFORM AND DISTURBED CANOPIES

To judge the utility of the set of simplified-flow equations given above (the ‘flow
model’), we must specify the closure constants, then compare calculated winds and tur-

bulence with those observed over, preferably, a range of uniform and disturbed flows.
We restrict our attention to experiments providing measurements of both the mean flow
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and the turbulence (shear stress and TKE), and depend heavily on data from the CSIRO"
(Environmental Mechanics) wind-tunnel.
For each experiment we determined a local drag coefficient:

. 1 dr
T Uz) 8z’

cdahcfz) (30)

from the measured mean wind and shear stress within the canopy. Because such detailed
information on cy(z)a(z) would usually be unavailable, we also performed sirnulations
using a bulk drag parameter C; (i.e. a constant value for cgah,) defined by:

1 2
f(i’“) =1= C**f (2) d=. (31)
0

From observations of ¢, ,, (and in some cases o,) immediately above the canopy, we
determined ‘equilibrium’ ratios ¢, = o, (h.)/u .0, etc., and:

2
Cam§c§+c§+ci' (32)

For future convenience we have tabulatei;d for each experiment the parameters input to our
simulations, the experimental profiles U, k, t, and (derived) Cy, cqah (2).

(@) The Eéurry Hill experiment

Brunet et al. (1994) reported a wind-tunnel study of flow in a model aeroelastic canopy
(nylon fishing line) within the CSIRO wind-tunnel-wall boundary layer. In the Furry Hill
experiment (Finnigan and Brunet 1995) this canopy was placed upwind and over a Witch
of Agnesi ridge. Parameters important for the present work are given in Table 1.

The pressure gradient in the test section of the tunnel upwind of the hill was set to
zero by adjusting the height of the tunnel roof, but there was a vertical gradient in Reynolds
stress above the canopy (balanced by advection). To permit simulation of the 1, k profiles
aloft, for the wind-tunnel experiments we calculated an effective pressure gradient:

1 8P AT
pu, Bxffzc dz/he (Riﬂ) 53)

(where p is the density and 7, is the observed profile of shear stress). This pressure gradient
was imposed 1 the simulations.

(b) The ‘Elora corn’ canopy

Wilson et al. (1982) reported profiles of turbulence statistics within (but not above)
a mature-corn canopy at Elora, Ontario, using servo-controlled, split-film, heat-transfer
anemometers. Here we tested our numerical simulation of canopy flow against the two days
of Elora measurements (Tables 2} selected by Wilson (1988), to avoid the complication of
changes in canopy height.

For this canopy, leaf-area density @{z) was not height-independent. The profile of
a(z) for the time of these measurements is unknown, but in any case, like Wilson (1988)
and as for the data from the wind-tunnel experiments, we simply derived from measured
U (z) and 7(z) a profile of the combined parameter csah.(z), Table 2(C).

* Commonwealth Scientific and Industrial Research Organisation,
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TABLE 1. (A) PARAMETERS OF THE FURRY HILL EXPERIMENTS: A
MODEL CANOPY ON A RIDGE

Property Symbol Value

Hill half-length’ L 0.42m
Hill height H 0.15m
Canopy height he 0.047 m
Displacement height d 0.0333 m
Roughness fength 70 0.00564 m
Upstream friction velocity w0 0.975ms~!
Canopy drag coefficient?® cq 0.68

Stalk area per volume a 10m!
Bulk drag parameter C = cgahe 0.32
Mean wind af z = A ug(he) /i 3. 7ms™}

Equilibrium variances® Ou.v.w ] Hs0 2.2,2.2,1.25
TKE at z = A, kolhe)/tag 5.62
Effective pressure gradient  (he/pu’,)aP/ox  —0.16

IThe hill profile was truncated at x/L = +2.20.

*This value for the (bulk) drag coefficient was obtained by Brunet
et al. (1994) from the measured canopy wind profile and the canopy-
top shear siress, assuming zero stress on the ground. They wrote
the form drag as 1/2 cgan®, and reported cq = 1.35; the value given
accords with the practice here of omitting the factor 1/2.

3From measurements of o, ,, at z =k, and an approximation that
o, = G, We ought to have written o2 = o, 0., as suggested by Legg
et al. (1984), and as we did for the Tombstone canopy data. However,
our inconsistency in the matter of o, does not bear on the usefuiness
of our closure.

TABLE 1. (8) MEAN PROFILES IN AND ABOVE THE FURRY HILL WIND-
TUNNEL CANOPY MEASURED AT THE STATION FARTHEST UPSTREAM FROM
THE RIDGETOP i.¢. x /L == —35

2/ ke Ul tfud, kjud, z/he Ufug  thiy  kjul

6 11.61 0.17 138 1.2 456 091 548
5 1693  0.32 205 11 424 097 5.56
4 1005 044 29 1.0 3.7 1.04 5.00
3.5 943  0.59 362 092 3.15 0.9 4.42
3 BS7  0.69 418 0.83 279 076 3.46

2.5 761  0.85 496 075 236 053 2.64
2.25 708 0.85 486 0.66 1.87 032 1.84
2 6.87 0.78 482 0.5 147 012 1.05
1.75 601 094 526 0.33 1.2 0.06 0.65
1.5 551 087 524 6.186 104 0006 038
1.35 505 (.94 5.52

TABLE 1. (¢) HEIGHT-DEPENDENT DRAG
CORFFICIENT FOR THE FURRY HILL CANOPY
(FrROM BRUNET et al. 1994)

Z,’hc Cd
0.22 (L75
0.4 0.75
0.6 1.1
0.75 0.88

1.1 0

717
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TABLIEZ2Z (&) PA&M{ETERS OF THE ELORA CORN CANOPY

wmmagmw EXPHRIMENTS
Property  Symbol  Value
Canopy height he 221m

Bulk drag parameter C=cyah, 079
Mean wind at 7 = h, uolhe}fuw 304
Equilibrium variances o, 4w/t 2.06, 1.65,1.13

TKE at 7 == k, fcﬂ{hc)/ﬂiﬂ 4,12
TABLE 2. (8) MEAN PROFILES IN TABLE 2. {¢)THE VERTICAL PRO-
ELORA CORN 2-4 Aucust 1977 FILE OF cg{zyalz)h. DERIVED BY
(WILSON 1988) WiLson (1988} FROM MEASURED
WIND AND STRESS PROFILES OF THE
tfhe Ufuw tiuly, Kkjul ELORA CORN CANOPY MEASURE-
MENTS OF 2-4 Aucust 1977
1 304 1 412
087 201 087 2.83 t/he  caahe  z/he  cyahy
081 158 064 24
075 099 031 146 095 01 05 3
062 055 012 08 09 047 045 36
05 04 005 058 085 14 04 45
044 024 005 037 08 23 035 54
033 014 002 028 075 2403 66
07 25 025 88
Unequal sampling times were used 0.65 2.6 0.2 16

across different levels. (L6 2.5 .15 19
: 0.55 2.5 (.1 11

The harge values deep in the canopy
are of dubious validity, deriving
from stress gradient based on a few
small values of shear stress, and set-
ting cqah. =4.5 below z/h, = 0.4
makes negligible change in the sim-
ulations.

(¢} The ‘T ombstone’ canopy

The “Tombstone” canopy (Raupach ef al. 1986) was an array of vertical bars (60 mm
high by 10 mm wide), arranged in a regular diamond pattern (spacing 60 mm cross-stream,
44 mm along-stream), on the floor of the CSIRO wind-tunnel. Although an unnatuoral type
of canopy, the experiment provided excellent data on scalar dispersion (trace heat) from
line and area sources in the canopy, as well as a test of the importance of horizontal
inhomogeneity on the scale of the ‘tombstone” spacing. Because this is such an unusual
canopy, and because the flow is so comprehensively documented and analysed, these data
provide a useful challenge to the breadth of applicability of the closure we have introduced.
The parameters are given in Table 3(A).

The flow was in approximate streamwise equilibrium (i.e. along-stream gradients
were weak) in the test section. Velocity statistics were measured with a specially developed
3-wire probe (Legg et al. 1984). The data used here (Tables 3) are mostly from measure-
ments at (their) x ~ 1.5 m. The wind profile is a composite, made up below z/ 4. = 1.5
of the spatial average (U) measured by sonic anemometers at x = 1.25 m (their Fig. 3(c);
Raupach et al. consider this profile their best estimate of wind in the canopy), and made
up above z/ h, = 1.5 of the hot-wire profile from the central position (D) in the diamond
cell at x = 1.5 m. TKE and shear stress, likewise, are from x = 1.5 m position D. From the
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TABLE3. {A)PARAMETERSOF THE TOMBSTONE CANOPY EXPERIMENTS
Property Symbol Value
Canopy height fic 0.06m
Bulk drag parameter Cy = cgah, 0.31
Frontal area per unit volume ¢ 3.83 m-1
Friction velocity U0 1.ims™!
Mean wind at z = &, uglhe) ftten 3.09
Equilibrium variances Oy v,w/ sd 20,15 1.14
TKE at z = h, kolhe)/uZ, 3.8
Effective pressure gradient  (he/pul }aP/dx  —0.23

2
v

= (5, 0y, &8 suggested by

Friction velocity is derived from measured shear stress above canopy at
. x = 1.5 m. Equilibrium variances assume o
Legg et al. (1984).

TABLE 3. (8) MEAN PROFILES IN AND ABOVE THE TOMBSTONE CANOPY
z/he Ujuw r/uin kfuf{} 2/he  Ulfuw rfuiﬂ k,’uf{, cadhe
4.45 9.04 1.16 3.82 0.99
378 8.42 1.06 0.97
33 7.83 i 3.09 0.83* 0.19
2.7 6.84 (.96 32 .23
2.3 6.3 0.92 .27
1.87 5,54 0.9 0.85* .29
3.26 0.57 0.85 0.64* 2.74 0.33
2.68 0.78 3.24 0.83 2.27 0.35
2.32 .75 3.27 0.79 - (.38
1.87 0.85 .72 0.48* 2.2 .46
1.76 3.25 (.66 1.86 .39 .52
1.66 4,91 (.57 .20, 0.23* 1.66 0.62
1.62 371 0.5 1.59 0.27
1.58 .98 0.42 0.11* 1.19 0.32
1.5 4.54 .33 1.32 0.14
1.34 4,23 0.95 376 029 0.98 0.15
1.23 {.86* (.16 1.18 0.75 0.18

Profiles are measured at streamwise location x = 1.5 m, except where noted by an asterisk
when they are measured at x = 2.5 m.

cqah. is computed from measured stress gradient (composite of 7/ u?, profiles at x = 1.5,
x = 2.5 m) and mean wind from sonics and hot wires, Note that our value for the drag

coefficient differs from that given by Raupach ¢t al. (1986).
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vertical gradient in Reynolds stress above the canopy (balanced by advection) we calcu-
lated an effective d, P.

4. NUMERICAL SOLUTIONS FOR UNIFORM CANOPIES

In this section we determine the three closure constants (c, «, u) by optimizing
a numerical simulation of the upstream (equilibrium) Furry Hill observations, then test
them against independent canopy-flow measurements.

According to Launder and Spalding (1972, 1974), the specification 4 = Ky /K = 1.0
(equalify of eddy viscosity and effective eddy diffusivity for TKE) is optimal for free
turbulent flows (plane jets and mixing layers), and also for boundary-layer flows p ‘should
be approximately unity’. Notwithstanding those findings, and because we are dealing with
a very different flow, we treated y as free to be varied (more on this below).
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The constant o arises due 1o farm—drag By reasoning similar to Wilson {1988), we
expect & ~ 1, but its exact value is unknown. Similarly, we have no a priori knowledge of
the optimal value of our constant (c) relating the length-scale A, to k/2(h.)/(0U/82)4..
The remaining closure parameter (L) accommodates the (possible) shallowness of the
above-canopy constant-stress layer (e.g.'in 2 wmd-tunnel) Its numerical value affects our
simulated profiles of U, 7, k only far above the canopy in a region of little interest to us.
We set Lo,/ b, = 1.5 for numerical simulations of wind-tunnel data; for field experiments,
unless one includes a deep layer of the planetary boundary layer (PBL), L., = cc.

In the simulations of this section, the uppermost U gridpoint was placed at z/ A, = 10,
and vertical resolution was a constant (and unnecessarily generous) Az/ k. = 0.05.

(a) Optimizing closure constants wifﬁz respect to the Furry Hill upwind observations

Measurements of U, t, and k are available to height z/ A, = 6, at x/L = -5, far
upstream from the ridge in the Furry hil]ﬂﬂw experiments. Figure 3(a) compares those
measured profiles, with simulations using @ = ¢ =1, . =0.2; all other inputs (d, c.,
¢4, @) are provided unambiguously by the Furry Hill data. The agreement of model and
observations is excellent (though the modelled above-canopy gradient in shear stress is only
the necessary consequence of our imposed 9, P). Evidently there is little to be gained by the
exira complexity of specifying a height-dependent drag coefficient. The limit-parameter
for the in-canopy length-scale is calculatr:d to be A./ h, = 0.36 and the actual length-scale
at canopy top, Alhe)/ he =0.19,

In view of the recommendation that i =1 (Launder and Spalding 1972, 1974) it
is initially surprising that in our flow sn;nuiam}n p = 0.2 is optimal. The outcome of an
alternative parameter choice (¢ = 1.5, o = 2.5, u = 1), visibly inferior in its reproduction
of the profile of TKE, is given in Fig. 3(b). However, recall that the diffusivity K, = uX
parametrizes the sum (T, + T;) of pressure transport and turbulent transport (of resolved
TKE). Now, there are theoretical and experimental grounds for believing these processes
partially cancel, i.e.that | T, + T;| < max{|7,]|,|7:|}. Ontheoretical grounds, Lumley (1978)
suggested

Foapf
pu;
I

and most turbulent wall-layer modelling studies have assumed turbulent transport is dom-
inant. Direct numerical simulation (Rogers and Moser 1994) of a plane mixing layer
supported Lumley’s suggestion. We believe the mixing layer to be a better analogue of a
canopy flow than is a boundary-layer flow, in view of the inflexion-point in the canopy
mean wind profile. However observations by McBean and Elliot (1975; p’ directly mea-
sured) in the unstable atmospheric surface layer, and by Castro and Bradshaw (1976; {p'w')
by residual from the TKE equation) on the centre line of a plane mixing layer, gave a much
greater role to pressure transport, viz.

d o d
dz dz

while for the Furry Hill canopy, Brunet ef al. (1994) inferred (by residual from the TKE
budget) that 7, ~ —0.87,. The crucial point is that, if |T, + 7;|/|7;] is systematically dif-
ferent in the canopy from in the simple wall-shear layer, then there is no reason why p = 1
should obtain. If, as some evidence suggests, a larger fraction of 7, than 20% is negated by
T, in canopy {and mixing-layer) flows, then we would require & < 1, and our specification
that 1 = 0.2 may be defended.

1)

v —0.2 W uju,
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(a)

2/ he

e ] 1 ] £ |

o 2 4 6 & 10 12 8
U/u0
(b)
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i
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Figure 3. Mean wind speed (I/), shear stress (), and turbulent kinetic energy (k) observed {(») in and above a
model aeroelastic plant canopy in a wind-tunnel boundary layer (Furry Hill experiments, data from station x /L =
—35), compared with the outcome of our numerical simulations. () ¢ = o = 1, 41 = 0.2; and (solid line} height-
independent bulk drag coefficient Cy = cqah, = 0.32 versus (dashed line) measured height-variable cqah (z) from
Table 1(C). (b) Height-independent bulk drag coefficient Cy = cqah, = 0.32; and (solid line) c =a =1, u = 0.2
versus (dashed line) ¢ = 1.5, @ = 2.5, == 1.0. See text for further explanation, |

Further exploring our reason for setting x4 = 0.2, Fig. 4 compares several modelled
vertical profiles of the terms in the TKE budget. For each of the parameter choices shown,
there is at least gualitative agreement with the measured TKE budget of Brunet et al. (1994;
Fig. 17(b)). In our simulation using c4 = c4(z), shear production peaks only a little higher
than the reported P(h.) = 4. Their ‘D — P,,’, in which P, = —é¢z, should be compared
with the minimum of our curves ‘D’ (= €. ) and ‘W’ (= €x), since we set € = max|e.., €]
Then our estimate of the TKE sink is comparable to the profile they observed (peaking
at about —6 near the canopy top). And while our TKE balance with p == 0.2 results in a
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Figure 4, Vertical profiles of terms in the turbniﬂ:ntwkmetrc-enﬁrgy equation, hcu*ﬁ ok, according to our simu-

lations of the Furry canopy. P represents shear production, T is turbulent transport, D is €., and W is €. (a)

c=a=1, u=02 cgah(2);(B)c = =1, =02 cqah. =032, (c)c = 1.5, = 2.5, pt = 1.0, cyah, = 0.32.
See text far further explanation,

smaller transport term (7') than Brunet et @l. reported, this specification was the only way
to match the observed k(z). After cgnsxdermg these TKE budgets, and {(more importantly)
the simulation of the (directly important and actually observed) variables (U, r, k), we
concluded that within the compass of the present closure scheme, the means to obtain a good
simulation of £(z) for the Furry Hill canopy is a reduction of u from the ‘recommended’
value. Having ‘calibrated’ the closure scheme against the Furry Hill data, we now test the
model against independent canopy-flow measurements.

(b) Simulation of the Elora corn canopy

Figure 5 compares modelled (o = ¢ =1, u = 0.2) and measured profiles of U, r,
and & for the Elora corn canopy. No background pressure gradient was imposed in the
simulation, as we expect a constant-stress layer above the canopy in this horizontally
uniform flow. In the case of a constant drag coefficient, the limiting in-canopy length-scale
was calculated to be A,/ A, = 0.24, and the actual canopy-top length-scale A(h./ b, = 0.15
{versus 0.36, 0.19 for Furry Hill). Profiles of U, t resulting from imposition of the ‘true’
profile cgah (z) are superior to those using the constant, bulk drag coefficient Cy; and of
course, since both specifications derive from observations of U, 7, our modelled profiles
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Figure 5. Mean wind speed ({/), shear stress (), and turbulent kinetic energy (k) observed (e) in a canopy of

corn (Elora, Ontario), compared with the ouicome of simulations with: ¢ = o =1, u = 0.2; (solid line} height-

independent bulk drag coefficient Cy = cgah, = (.79 versus {dashed line) measured height-variable cyah.(z) from
Table 2(C). See text for further explanation.

of U and r are not independent. With the height-dependent csah (z), if modelled U is
‘correct’ then so must be medelled T, |

It is pleasing that, without alteration of the closure constants tuned above in line
with wind-tunnel measurements, we have achieved a reasonably good simulation of field
measurements. Only three program inputs distinguish this simulation from that of the Furry
Hill canopy winds: our specification of actual Elora cyah.; our specification ¢, = (.24 on
the basis of the Elora canopy-top data (c. varies little from flow to flow, and could have
been held fixed across our simulations of field and wind-tunnel canopies with very minor
impact); and our non-inclusion of a background 8, P and a limit to above-canopy length-
scale. These last are entirely trivial (and completely appropriate). Thus, to all practical
purposes, the only distinction of our Elora simulation from that of the Furry Hill wind-
tunnel canopy is the inclusion of the correct cyak..

(¢) Simulation of the Tombstone canopy

A peculiarity of the flow over the Tombstone canopy is that the wind profile aloft 1s
more nearly logarithmic in z than in z — d; i.e. the apparent displacement length 4 =~ 0.
This conflicts with the report by Raupach et al. (1986), but is an unambiguous feature of the
mean wind profile near x = 1.5 m. Figure 6(a) compares modelled (0w =c =1, u = 0.2;
d = 0; L/ he = 1.5) and measured profiles of U, 1, k for the Tombstone canopy, using
both a height-dependent and a constant drag coefficient. The model profiles for U,
are rather good; they are not independent of each other, in view of our specification of
the ‘true’ drag coefficient; and the above-canopy stress gradient is only the necessary
consequence of our imposed V P. Consistent with the absence of a displacement length in
our simulation, our calculated limit to the in-canopy length-scale is markedly higher than
for the two previous canopies, A./ i, = 0.48. Actual canopy-top length-scale is A(h)/ b, =
0.31, which is nicely consistent with the independent deduction by Coppin ez a/. (1986)
from tracer-heat dispersion in this flow, that the Lagrangian time-scale in the canopy is

Ty = O.Shc/&t*{}.
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Figure 6. Mean wind speed (U), shear stress (t}, and turbulent kinetic energy (k) observed (o) in and above

a model canopy of metal plates standing bluff to the wind (the Tombstone canopy) in a wind-tunnel boundary

layer, compared with the outcome of our numerical simuolations. (8} ¢ = o = 1, pu == 0.2; and {solid line) height-

independent bulk drag coefficient Cy = cyah, = 0.31 versus {(dashed line) measured height-variable cgah (z) from

Tabie 3B. (b) Height-independent bulk drag coefficient Cy = cqah, = 0.31; and (solid line) c=a =1, u =02

versus {dashed ling} c = 1, & == 0, g = 1 (augmented TKE diffusion, no spectral shortcut). See text for further
explanation.

Our underestimation of & deep in the Tombstone canopy is similar to Wilson’s (1988,
Fig. 8) prediction of o,(z) for the Tombstone canopy; Wilson used second-order closure
and (by oversight!} took z rather than z — d as the length-scale for €. In fact, for all three
canopies we modelled, our profiles (of U, v, k) are only slightly altered by eliminating the
torm-drag sink for TKE (setting oo = 0)}—which we tried (firstly) for the Tombstone canopy
on the suspicion that the solid, bluff ‘tombstones’ transferred k, not to irrelevant wake-
scales but to larger eddies within the waveband that & itself represents. This surprising result
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arises because we wrote € = max[e, €]. Eliminating the ‘spectral shortcut’ (Kaimal and
Finnigan 1994) due to form-drag, which transfers resolved TKE to invisible small-scale
TKE, results in a compensating increase in €. to an extent which we have not attempted
to quantify. Our specification that o = 1 is consequently moot.

Figure 6(b) shows that, unsurprisingly, increasing diffusion of k (setting 4 = 1) in-
creases k deep in the Tombstone canopy. However because the Tombstone canopy is
(acrodynamically) unrepresentative of real canopy flow, and because the choicea = ¢ =1,
i = 0.2 provides a markedly better simulation of the aeroelastic Furry Hill canopy, we
prefer the latter specification.

A quibble with the closure we have presented is that, although the chosen form for 2,
gives correct length-scale (k,z) near the ground, it does not result in a constan! length-scale
in the upper-canopy for the canopies considered here (see Fig. 8(b)). That may not be a
profound deficiency, but perhaps a different dependence of A; upon the guiding factors k,z
and A, might be more elegant.

5. SIMULATIONS OF THE FURRY HILLFLOW

For the hillflow simulations the (U, k) equations were discretized on a staggered
grid spanning —5 <x/L =5, z/h. < 15. Resolution at (x, z) = (0, h,) was (Ax/L,
Az/h) = (0.1, 0.05); the grid expanded from that point with increasing z and [x]. The
artificial diffusivity was set at K, /u.oh.) = 10~%, and the simulations are insensitive to
large variations in that parameter.

Recall that our intent is to test the preceding closure scheme, by imposing in the
{/-momentum Eq. (20) a known pressure gradient, measured in flow over a hill. To that
end we can interpolate the actual observations of pressure from the Furry Hill experiments,
or use a suitable analytic fit. The theoretical pressure field (Pyy;) derived by Jackson and
Hunt (1975) represents the Furry Hill observations quite well (Fig. 1(a)), provided that an
effective hill height H' < H is introduced (because Furry Hill induced separation; note
that H' or H enter our simulation in no other way than through our use of Pjy as a mere
convenience).

Figure 7 shows the observed profiles of U, 7, k along the upslope of Furry Hill, in
comparison with a numerical simulation. Closure parameters took our earlier optimized
values (o = ¢ == 1, & = 0.2), We used a height-independent drag coefficient; the driving
pressure gradient was 8, Piy at x < 0, and zero leeward of the hilltop; and to account for the
shallowness of the wind-tunnel boundary layer we set L./ A, = 1.5. While there are some
deficiencies of our solution (discussed below), overall the agreement of the observations
with the calculated response is encouraging. If, rather than Py, an interpolative fit to the
observed ground-level pressure field is used to drive the flow, the simulated windfield is lit-
tle altered, except most notably in the region —2 = x /L < —1.5 deep in the canopy, where
the observed pressure gradient is more sharply adverse than 3, Py (Fig. 9). Neither does
inclusion of the observed height-dependent drag coefficient c4(z) change the simulation
in anything but a very minor way.

The adaptive canopy length-scale A.(x), used to limit the inner length-scale A;(x, z),
shows an interesting variation over the hillside (Fig. 8(a)), taking near ridgetop a minimum
value of about 50% of its equilibrium value (the reductionin A (%) is less marked), due to the
strongly increased wind shear (at z = h.). Figure 8(b) shows the consequent alteration to the
vertical profile of the length-scale A(x, z) at hilltop. The variation in A;(x) is approximately
congruent with the pressure field. That this is so is not surprising. As one of several means
we examined for adding a canopy layer to the JH analytical solution, we explored an
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Figure 7. Comparison of observed profiles of mean wind speed (U /u,0), shear stress (t /u?,) and turbulent kinetic

energy (k/u E{;) on Furry Hill with the numerical sitnulation using ¢ = & = 1, g = 0.2 and height-independent bulk
drag coefficient Cy = eqah. = 0.32. Solid lines give the local model solution and dashed lines the model equilibrium
solution for comparison. At all stations the local observations, represented by the various symbols, are plotted in
comparison with the equilibrium-state observations (c), the latter measured upstream from the hill at x /L = 35,

analytical treatment of the canopy layer using a momentum-integral method, wherein the
canopy-wind profile was presumed everywhere to remain of exponential form:

e H s |
Ux, 2) = Uy (x) exp (ﬁ (x) i = ) , (34)

which is consistent with a height-independent canopy length-scale*. The governing (I, W
and continuity) equations provided a single equation, coupling variations in canopy-top

* Unfortunately if a canopy layer, thus treated, is to be matched to the JH treatment aloft, one must set i, = O (there
is no perturbation to length-scale in the JH theory). -
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Figure 8. (a) Variation over the Furry hillside of the limit Ac(x) to the in-canopy length-scale (dashed line) and
the length-scale at canopy top A(x, k) (solid line}. {b) Vertical profiles of the length-scale 1(x, z) at equilibrium
(dashed line) and at hilltop (solid line). See text for further explanation.

mean wind speed U, (x), wind-profile attenuation coefficient 8'(x), and canopy length-
scale A (x) to the driving variation in pressure: |

e 0 e 0P n U, (9)
0x dx Jx ox ¢

where the real coefficients n; to ng are dependent only upon the equilibrium properties:

ko, d/ b, Uy(h.)/u.. A phase relationship between P(x) and A (x) is thus to be expected.

Spatial variation of the canopy length-scale A, = A.(x) is not a crucial aspect of the

success of our simulation. If one specifies A, = const, the simulation of the perturbed

profile of TKE at ridgetop is visibly inferior to that of Fig. 7, but other changes to the

profiles are too subtle to be visually distinguishable. In fact, not much is lost by the further

simplifications of treating the upwind flow as simply a deep constant-stress layer, and
specifying the length-scale as:

1 1

N £ = nhm

Mz k(z-4d) (36)
= L - 1 < nh
- kﬂz A Y4 o

with n & 1.5 and A chosen to ensure A(z) is continuous across z == nh,. It is only too easy
to culminate with a more complex model than justified by the criterion of agreement with
available data.

It can be seen from Fig. 7 that there are interesting variations in the shape of the wind
profile over the hill, notably, strong modulation of the wind shear at canopy top, possibly
to the extent of erasing the inflexion in the wind profile at x/L =~ —1, while markedly
accentuating the shear {and the inflexion) at hilltop. A qualitative explanation of these
effects was given by Brunet e al. (1994), and the present work is consistent with their
thoughts. In both the canopy layer and in the flow above, the source of disturbance is
the pressure gradient, set essentially regardless of details of the inner layer on the hill.
But there is a mismatch between the response to that pressure gradient of the wind in
the canopy, and the wind above (see Fig. 9). Above the canopy, shear stress (adequately
described by our quite simple closure model, or an even simpier one) strongly couples the
flow along the vertical, and the force balance is non-local (due to streamwise advection
and shear stress); but deep in the canopy, where the pressure gradient is unchanged but
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Figure 9. Observed mean velocity field over Fu::r}r Hill, showing immediate response of the deep-canopy wind
to the pressure gradient d, F (given on Fig, 1(a}) and delayed response by the wind aloft. See text for further
explanation.

advection and 3t /8z are much smaller terms, the flow is decoupled from aloft, and form-
drag strongly moderates the response to the pressure gradient, giving a force-balance in
which the ‘local’ terms (pressure, form-drag) dominate. Thus, strongest winds deep in the
canopy appear at the x-location where the pressure gradient is strongest (Fig. 9).

Our model then, seems rather successful: at hilltop its agreement with the observations
is striking, certainly capturing the altered shape of the wind profile. Now the model U-
profiles are apparently self-congruent in their shape (the inflection point in the U/ profile
near z = h, is everywhere visible). It is not absolutely clear that the observed wind profile
is not also self-congruent; the evidence for erasure of the inflexion point is not compelling.
Be that as it may, certainly the strength of the shear at canopy top varies markedly, and is
captured by the simulation.

But while the deep-canopy wind is skillfully reproduced everywhere, above the
canopy, In the region x /L ~ —1, the model changes U — Uj are of opposite sign to those
observed, i.e. the model indicates acceleration where deceleration was observed. The JH
theory has the same deficiency, and this feature has proven immune to any cure we tried.
Please note, however, that we did not attempt to impose on our flow a height-dependence
of the pressure field such as was actually measured. Thus our failure to predict some details
of the response of the wind to flow over the hill may relate to an oversimplification of
the pressure field, or (we think improbably) to terms neglected in the equation of motion,
rather than (necessarily)} to inadequacy of the closure itself.

6. (CONCLUSIONS

‘Two key aspects of our numerical solution have permitted much better reproduction
of the Furry Hill observations than we obtained in any of the analytical treatments we
explored: nonlinearity, and the ability to adopt a height-variable length-scale for the tur-
bulence within the canopy (streamwise adjustment of the length-scale is less important).
Because the wind speed deep in the canopy is essentially decoupled from the flow aloft,
and governed by the balance of advection, pressure gradient, and form-drag, it is the non-
linearity of the numerical treatment that is the crucial advantage as regards predicting the
flow deep in the canopy; the height-variable length-scale A = k,z of the numerical model
near the ground only permits us to resolve the strong shear near the ground (beneath the
lowest measurements).
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It has been shown elsewhere (Wilson and Flesch 1996) that with a simple alteration
to the length-scale A(x, z) in clearings, the closure scheme we have described here also
provides a good simulation of the pattern of variation of wind speed and turbulent kinetic
energy in periodic forest cut blocks. Thus, perhaps we have established something like the
minimum level of closure required to calculate disturbances to the wind in a plant canopy.
We will recapitulate the basis of these simulations,

We impose the no-slip condition at the ground, and specify either a shear stress or a
pressure gradient aloft, as appropriate. Qur boundary conditions are otherwise “neutral’,
insofar as they do not ‘mould’ the profiles of U, k, 7. We adopt (and define as ¢;')
the observed equilibrium value at canopy top of k/uZ, a quantity that in any case does
not greatly vary from canopy to canopy, or from one local equilibrium layer to another.
We use measured cya to ensure that in the canopy, whatever the wind speed, the “true’
rate of momentum exfraction ensues. From those inputs, and given three (at the outset)
flexible coefficients, the model produces-—with fixed values for those coefficients—quite
acceptable profiles of wind, stress, and TKE in equilibrium and disturbed flow. Surely then,
the set of reasoned simplifications and choices (length-scale, treatment of vegetation drag,
etc.) we applied to the momentum and TKE equations constituting the model, must have
captured more than just a grain of truth regarding the simpler types of uniform or disturbed
canopy flow. This is surprising, for the closure makes little more than token recognition
of the complexity of the flow. Its sole concession to recent thought on (and measurements
of) the mechanisms of canopy flow is to invoke the mixing-layer analogy to provide a
canopy length-scale. In fact, despite much recent emphasis on the intermittency of canopy
flows, and notwithstanding that there are detailed mechanisms at work (e.g. the fluctuating
pressure gradients aloft driving deep-canopy wind fluctuations; Shaw and Zhang 1992), on
the face of it the striking spatial variations of mean properties can largely be explained by
mean advection and ‘diffusion’ (i.e. parametrized turbulent convection) in the presence of
average sources (rates of momentum extraction, kinetic energy transformation, etc). This
is fortunate, for presumably the vaster framework of large-eddy simulation is a prerequisite
if one must do justice to the intermittent processes.

In the context of this simple X -closure, the most uncertain aspect of the implied set
of equations is the treatment of TKE sources and sinks in the canopy; these uncertainties
are not relieved by using the k-¢ model, or a higher-order closure; a spectral division
of the TKE is called for, as in Wilson (1988). Our practice of writing € = max]e.., €] 18
inelegant, and possibly not even advantageous; and we noted that our TKE budget conforms
qualitatively only with that reported for Furry Hill. Fortunately though, simulations of U,
T are remarkably insensitive to wide variations in treatment of k, possibly because the
eddy viscosity is proportional to k*/2.

It is appropriate to emphasize again that modified k-¢ models, although they avoid
specification of a turbulence length-scale by carrying an empirical e-equation, suffer from
fundamental uncertainty about how best to treat the dissipation mechanisms. For example,
the k-equation used by Green (1992) and by Liu et al. (1996) included the source term:

SE = CdﬂU3 — 4CdﬁUk,

due to plant drag, representing gain to k from mean kinetic energy, MKE, and loss from
k to smaller scales. It is simpler to regard k as excluding the TKE residing in fine wake-

scales (two-band spectral representation), in which case the MKE conversion term 1s to
be omitted. Ambiguities in similar terms (S.) of the €-equation are even more serious.

Furthermore optimal choices for Si and S, are not independent, but are related physically
in 2 manner that is not yet clear.
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By no means do we take the sm:{:ﬁ:ss of canopy simulations using an eddy viscosity
to imply that higher order closure is worthless. Certainly there could be regions of some
flows where turbulent fluxes transfer mean momentum from zones of slow to high mean
speed (negative effective eddy vzscmzty) We will hazard an exploratory suggest:ton as to
where that might occur, from knowing how counter-gradient scalar fluxes arise (i.e. by
postulating an approximate momentum-scalar analogy). Counter-gradient scalar transport
(implying a negative scalar eddy diffusivity) arises in the very near field of distinctly
separated sources (Raupach 1987; Wilson 1989) due to the fact that, very near those
sources, the net displacement of a marked fluid element relative to its point of release is
not a sum over many independent random path segments (thus not diffusive), but rather is
due to a single path segment along which velocity is highly correlated (memory dominated).
Lagrangian treatment of scalar transport/completely obviates the difficulties of the Eulerian
description, which arise no matter what the order of the (Bulerian) closure.

Whereas scalar concentration of a fluid element is conserved along its trajectory
(except for slow changes due to molecular diffusion), even in a nominally inviscid fluid
the velocity of a fluid element evolves along its trajectory in response to any pressure
field. There is, therefore, no rigorous analogy between momentum transfer and scalar
transfer. But despite that reservation let us see where an analogy would take us: where
in the PBL do we see widely separated momentum sinks? Momentum sinks only occur
near or at the ground. If we looked in great detail at the velocity field between a pair of
wires strung above the grt}uﬂd we might find first-order closure inadequate, at least for
smtably contrived spacings. As far as ja natural system goes, perhaps the leading edge
region of a crop/forest block temznaﬁzng a long clearing, where there is strong wind
penetration, might be a region of counter-gradient transport (near the wake of a strong,
vertically distributed momentum sink). This is even more likely if the vertical distribution
of the drag is multi-peaked, due to a non-uniform foliage distribution. Ameliorating this
putative difficulty, and a compensation not arising in the case of scalar transport, is the
fact that in such a region the mean pressure gradient is liable to dominate the behaviour
of the flow, so that miscalculation (by a poor closure} of the stresses, which anyway are
of secondary importance there, might carry little penalty. Further downwind, with the
wind speed throughout much of the canopy being light, the bulk of the drag occurs near
canopy top, and there no longer arises a sharply distributed momentum sink. By this line
of (strictly unjustifiable) reasoning the eddy viscosity closure might also be unacceptable
if we demanded a high fidelity treatment of a very sparse canopy.

In conclusion, we commenced these simulations to guide a parallel search for an
analytic description of disturbed canopy flows. A satisfactory analytical solution was
not found. But the turbulence closure given here, which is simpler than others claiming
comparable effectiveness, captures quite well striking changes to the mean wind in a
canopy, caused by flow over hills or through clearings.
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