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Abstract A physically-detailed formulation of canopy évapotranspiration 
must include a specification of the within-canopy microclimate - the 
temperature, humidity and velocity of the airstream adjacent to individual 
leaves or canopy layers - because, in conjunction with the radiant energy 
supply and plant physiological factors, this local microclimate determines 
the transpiration rate from each leaf or layer. For predictive purposes the 
canopy microclimate must be deduced from a small number of remote 
measurements (including wind, temperature, radiation and humidity well 
above the canopy), and for this one requires a model of turbulent 
transport. 

In this introductory article for non-specialists the conservation 
equations governing the microclimatic variables, as well as other 
necessary tools and concepts, will be described in the simplified context 
of flow over a bare surface. With this preparation, and having briefly 
reviewed observations of canopy microclimate, the adequacy of K-theory 
or "first-order closure" as a model for turbulent transport will be examined 
from several points of view. It is concluded that the use of K-theory or of 
the closely related "aerodynamic transfer resistance model" to model 
turbulent transport within a canopy is generally unacceptable. 

The application of closure assumptions within budget equations 
for the transporting fluxes themselves (rather than in the budget equation 
for the mean value of the transported entity) results in a more 
sophisticated (but nevertheless approximate) model of turbulent transport 
("higher-order closure"). The nature of the terms in the flux-budget 
equations will be briefly explored and typical closure approximations will 
be shown. The success of higher-order closure models in predicting 
within-canopy wind statistics from an above-canopy reference wind speed 
gives encouragement that a higher-order model for the transport of heat 
and water vapour might prove a workable and not too complex 
component of a canopy évapotranspiration model - replacing the 
superficial concept of a canopy resistance without many additional 
(driving) inputs. 
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Transfert de la turbulence dans le couvert végétal 

Résumé On a présenté l'application des statistiques de la vitesse de 
turbulence à la description des flux à l'intérieur du couvert végétal. C'est 
à l'aide des statistiques de turbulences observées que l'on a illustré 
l'importance des rafales ou des coups de vents qui chassent au dehors 
l'air du couvert végétal. On a présenté les modèles de sortie d'ordre 
élevé et on a souligné les avantages qu'ils présentent par rapport aux 
modèles de premier ordre. On a décrit les succès et les problèmes 
associés aux modèles de sortie d'ordre élevé. 

NOTATION 

overbars indicate time average 

angle brackets indicate average in the horizontal plane 

a leaf area density m2 rrr3 

cp specific heat at constant pressure J kg-1 K_1 

d displacement height used in mean wind profile above canopy m 

e water vapour pressure 

e*(T) saturation vapour pressure at temperature T 

g gravitational acceleration 

k turbulent kinetic energy per unit mass 

ky von Karman's constant 

/ length scale 

p total atmospheric pressure 

rb leaf boundary-layer resistance 

rs leaf stomatal resistance 

s slope of saturation vapour pressure curve 

t time 

JJ vector velocity 

u,v,w velocity components along x,y,z axes 

u* friction velocity 
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.* 

kg 

m 
m 

m 

m2 s -1 

m -2 s -1 

F F F r x , r y r z 

m 

m2 s -1 

x,y,z streamwise, cross-stream, vertical axes 

x, x0> xs position vectors 

z0 surface roughness length 

D molecular diffusivity 

E vertical vapour flux density (évapotranspiration rate) 

F general vector flux density having components 

H canopy height 

K eddy viscosity or diffusivity qualified by subscripts (M,H,V) 

to specify (momentum, heat, water vapour) 

K-l short wave irradiance on a horizontal surface above W nr2 

the canopy 

L distance over which variables are to be averaged along m 

each horizontal axis 

Lmo Monin-Obukhov length m 

QG soil heat flux density W nr2 

QH average turbulent flux density of sensible heat W nr2 

directed along the vertical axis 

QE average turbulent flux density of latent heat directed W m -2 

along the vertical axis 

Q* net radiation W nrr2 

Qj net radiation energy supply to a particular leaf labelled i Wm - 2 

RL Lagrangian autocorrelation function dimensionless 

S source/sink term in generalized conservation equation 

T temperature or time (clear from context) 
T* scaling temperature T* =-QH /pcpu* K 

T0 absolute temperture K 

7 psychrometric "constant" (cpp/0.622 X) N nrr2 K~1 

X latent heat of vapourization J kg -1 

x> kinematic viscosity (coefficient of molecular friction) nr2 s~1 

$ volumetric concentration of a general entity >". Elsewhere any fluid property. 
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* M H v Monin-Obukhov universal function for gradients of dimensionless 

(M, H, V) mean velocity, temperature, humidity 

p moist air density kg rrr3 

pv absolute humidity (vapour density) kg rrr3 

CTU v w standard deviation of velocity fluctuation (u'y.w') m s -1 

% time over which variables are to be averaged (~30 min). 

Also shear stress (clear from context) N rrr2 

Sjj delta function (zero unless i=j) 

6 depth of the Planetary Boundary-Layer m 

xL Lagrangian integral time scale s 

V vector operator for spatial differentiation, V= (ôV3x, 3/dy, d/dz) 

r adiabatic lapse rate °C rrr1 

INTRODUCTION 

This article is intended to be a brief and reasonably easy summary of the Eulerian 
framework1 for description and prediction of turbulent transport in a canopy for people who 
are interested in évapotranspiration from canopies but are not specialists in 
micrometeorology. The fundamental involvement of the canopy airstream properties 
(velocity, temperature, humidity) in the processes determining canopy évapotranspiration 
will be well known to many readers. It is logical therefore that a framework for the 
prediction of areal évapotranspiration should include a determination of the canopy 
microclimate. 

Before addressing the topic of transport within plant canopies, a fairly detailed 
discussion of flow and transport over a bare surface will be given in order to introduce the 
reader to key concepts, terminology, and tools required for the description and prediction 
of turbulent transport. In addition this will serve to emphasize the very marked differences 
between flow over a bare field and flow through vegetation. 

In the context of flow over a bare surface, the "closure problem" will be 
encountered and discussed. The following section will very briefly review observations of 
the microclimate of plant canopies and interpret these in the light of the current theoretical 
framework. The observed occurrence of "counter-gradient transport" in canopy flow will 
serve as proof that "first order closure" ("K-theory") is an inadequate model for turbulent 
transport in a canopy. 

A Lagrangian description of scalar diffusion within the canopy has an important advantage over the Eulerian 
description in that there is no difficulty with the "near field" effects. M.R. Raupach (personal communication) 
has developed an analytical theory ("Localised near field theory") based on a simplified Lagrangian treatment 
of scalar diffusion. Note that the Lagrangian approach is unable to predict the wind field, and tfierefore relies 
on tfie wind field being (approximately) known. 
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The failure of K-theory will be examined from several perspectives, and the notion 
of second- (and higher-) order closure will be introduced. It will be shown that higher-
order closure models can do a good job of predicting the canopy wind and turbulence. 
Finally, use of higher-order closure models to calculate canopy évapotranspiration will be 
discussed. 

It will herein be assumed that we are concerned with the actual "areal 
évapotranspiration" over a large area A which is horizontally uniform in the sense that 
variables averaged both in time and over an area L2 « A (with L chosen to be much 
larger than all length scales of canopy irregularity) are independent of the precise 
horizontal location within A. In addition, although the practical interest may be in the water 
loss over some large time T (perhaps weeks or months), a proper physical description of 
canopy evaporation requires specification on a much shorter timescale x (short compared 
with the daily cycle, long compared with the longest turbulent fluctuations). 

It is also presumed that we wish not to "forecast" évapotranspiration, but to 
"diagnose" its past rate indirectly (rather than by direct measurement) over a short period x 
from a manageable number of related measurements over the same period x. The 
ultimate hope is that the number (and type) of measurements required might be small (and 
simple) enough that finances would permit establishment of an operational network 
sufficiently fine to enable useful diagnosis of areal évapotranspiration. 

Evapotranspiration may be prescribed either by the rate of toss of water from soil 
storage (strictly, soil and vegetation storage if T is short) or by the net rate of passage of 
water vapour across a horizontal reference plane at some distance from the ground. The 
latter prescription is "micrometeorological" in nature and amounts to determination of what 
is technically called the turbulent convective flux density (loosely, the turbulent flux) of 
water vapour along the vertical axis. 

Fig. 1 shows a slab of air of cross-section AA and depth Az = w At. This slab is 
considered to be the air which in a short time interval (At) has moved with vertical velocity 
(w) across the horizontal plane z through area AA. The volume of air crossing z through 
AA in time At is wAt AA, and the corresponding mass of water vapour crossing z through 
AA in time At is pv wAt AA, where pv is the absolute humidity (vapour density) [kg mr*]. 
The rate of passage of water vapour across plane z per unit area is simply 

pv wAtAA 

(having dimensions kg nr2 s_1, i.e., mass of water per unit area per unit time). This is the 
instantaneous vertical vapour flux density across the plane at z. The atmosphere is 
turbulent, so that w and pv fluctuate in time and space. We must therefore form an 
average. First, we average in time over interval x and represent the result with an overbar 

E = wpv = J- J w(t') pv(f) dt' (2) 
T t 
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FIG. 1. The slab of moist air drawn is the volume which in time At has crossed the plane 
at z with velocity w through area AA. 

Secondly, since a canopy is by nature spatially variable, we should average this time 
average in a horizontal plane 

< I > = <wp;> 

1 x + L y+ L 
= T\ J / wpv (x ' .yOdx'd/ (3) 

x y 

The "areal évapotranspiration" may then be constructed over any larger time 
interval T from estimates <E> over intervals x. Therefore the challenge is to determine 
<E> diagnostically from a small number of related measurements. 

The normal micrometeorological terminology will be used. The velocities along 
the x,y,z axes are denoted u,v,w where z is the vertical and x the streamwise axis (i.e., the 
average wind direction is aligned with the x axis). It is assumed that the mathematical 
preparation of the reader extends at least to a familiarity with simple calculus including 
partial differential equations, vectors, and some of the basic rules of vector analysis. 

THE VITAL ROLE OF THE DETAILED CANOPY MICROCLIMATE IN 
DETERMINATION OF CANOPY EVAPOTRANSPIRATION 

The canopy consists of an assembly of leaves (and the soil surface) evaporating and/or 
transpiring into an adjacent canopy airstream. The characteristics of this airstream 
(speed, temperature, humidity) may vary strongly with location in the canopy (in 
consequence of the localized absorption of radiation and momentum) and with time. From 
each evaporating surface in the canopy we may formulate the vapour and heat fluxes into 
the airstream. If we use the combination equation (Brutsaert, 1984), then for the i t h leaf 
we have a latent heat flux density 
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E i " s + T(1+rS i /rb i)
 u i + s + Y(1+rSi/rb i)

 w 

transferring vapour (latent heat) to the canopy airstream. We need to know, in addition to 
the radiation absorbed by this leaf and its stomatal resistance (neither of which is 
independent of canopy microclimate), the airstream temperature, vapour pressure and 
velocity (the latter determines the leaf boundary-layer resistance rbj ). 

The derivation of this equation does not specifically address averaging in a time-
varying system. Its validity is restricted to determination of the instantaneous vapour flux 
across an undisturbed leaf boundary-layer into an airstream with the given instantaneous 
properties. In reality the boundary-layer on the leaf is disturbed by changes in wind 
speed, wind direction, and the airstream properties (not to mention the radiation toad) 
which fluctuate on short timescales (seconds and minutes). It is quite possible that the 
time average values of e, T, u in the airspace beside a leaf may not predict the correct 
average evaporation rate from the leaf. 

No matter how we estimate <E> the within-canopy properties are important, even 
if they do not appear explicitly in the formulation used. For example, the popular "big leaf" 
model requires only a pair of "effective" resistances ("canopy" and "aerodynamic" 
resistance) and above-canopy reference values of net radiation, temperature, vapour 
pressure, and wind speed. Finnigan & Raupach (1987) have compared the "big leaf" 
combination model with a rigorous summation of the vapour contribution from individual 
leaves and the soil to show the detailed complexity of the effective resistances. While 
these resistances (in particular the canopy resistance) are often estimated diagnostically 
(by finding the value which allows the model to agree with observations) they are very 
difficult to relate to known variables satisfactorily for predictive purposes (see, for 
example, the article by J.B. Stewart elsewhere in this volume). 

We will therefore consider that specification of the in-canopy profiles of vapour 
pressure, temperature, wind speed, and radiative divergence (energy supply) is necessary 
for a proper summation of the vapour contribution from distinct canopy layers (and soil) to 
the overall canopy évapotranspiration. 

INTRODUCTION TO TOOLS AND CONCEPTS 

Before discussing turbulence in a canopy it is helpful to cover the more simple situation of 
turbulent flow over an extensive, flat, uniform, bare surface. This will allow the introduction 
in a fairly simple context of many of the tools useful for examination of canopy flow. 

The neutral wind profile over a bare, level surface 

Flow near the ground is almost always turbulent. It is therefore helpful to conceive of an 
average flow, and departures from average ("fluctuations"). The instantaneous 
streamwise velocity u(t) may be broken into u(t) = u + u'(t), where u is the average value 
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t H- X 

0 - 7 i u(f)df (5) 

and u'(t) the instantaneous fluctuation. This is called "Reynolds decomposition", and the 
process is carried out for all variables, i.e., p = p + p', etc. In the present section we need 
not average in the horizontal plane since we have assumed a flat, uniform surface. 

The average velocity (0) is observed to increase with distance from the ground z. 
The "no slip" condition for the flow of real (non-zero viscosity) fluids past a solid surface 
ensures that U vanishes at the ground. In order to understand this height-variation, we 
need a theory. The only available basis for a theory (apart from the guidance provided by 
dimensional analysis) is our confidence that mass, momentum, and energy are 
conserved. 

It will be assumed that the reader is familiar with what will be termed the 
"generalized conservation equation" 

U = -V®£+S (6) 

This equation states that the concentration (dimensions often, but not necessarily, 
kg irr3) of some entity changes in time at a fixed point in space only in response to: 

(i) a non-zero divergence ( V = 3/ 3x, 3/ 3y, 3/ 3z) of the vector flux density JF, 
where the components of £ are the flux densities of (j> along the x,y,z axes 
(i.e., Fx(x,y,z,t) is the rate of transfer of § through a unit of area of the yz 
plane atx ). 

(ii) a local source (or sink) S of the entity <|>. If <|> is, for example, a mass 
concentration [kg rrr3] then the dimensions of the source/sink term are [kg 
rrr3 s_1], i.e. S is the rate of production/extinction per unit volume. 

The generalized conservation equation is easily derived by performing a "box-
balance" for the content of <|> in an imaginary permeable "control volume" fixed in space 
(and finally shrinking the box to obtain the differential equation valid at a point). The 
equation expresses formally the elementary notion that if a stream of thieves are stealing 
vases from the back door of a china shop at the same rate as a stream of suppliers are 
delivering them through the front door, the number of vases in the shop is constant -
except if a bull is obliterating them or a potter manufacturing them in the shop. Specific 
budget (conservation) equations may be deduced from (6) by specifying the entity <|>, its 
flux £, and any creation/destruction term S. For example, setting (j> = pv, the absolute 
humidity [kg m-3], we obtain a budget equation for water vapour. The source term S can 
in this case only correspond to evaporation/condensation with respect to a suspended 
liquid phase. To progress further we must specify the flux density which consists of the 
sum of a convective flux density (due to bulk air motion carrying along the vapour) and a 
flux density due to molecular diffusion of water vapour with respect to the mixture (Bird et 
a/., 1960). 

£ = £ P v - p D v V & (7) 

Here Dv is the molecular diffusivity of water vapour in air [m2 s~1]. Substituting, we obtain 
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^ = - V . (upv - pDvVPv/p) + S (8) 

expressing conservation of water vapour. 

Similarly, if we identify <)> with the total (moist) density p we obtain 

3£ 
at = - V . £ p (9) 

The "continuity equation" contains no molecular diffusion term (the mass fraction of moist 
air in moist air is 1) and no source/sink term (no creation). It is helpful to expand the 
continuity equation by making use of the fact that, for any fluid property $, we have the 
identity (Chorin & Marsden, 1979; Batchelor, 1985) 

| t + J L . v * - g (10) 

where d<t>/dt denotes the "Lagrangian" or "material" derivative, i.e. the rate of change of the 
value of $ following a particular fluid element. Using the Lagrangian derivative, the 
continuity equation may be rewritten as 

If the density is invariant in time and space, or, equivalent^, the density is conserved 
along fluid element trajectories, it follows immediately that 

V*£=0 (12) 

In reality the density is not constant, but (12) remains a justifiable approximation for most, 
but not all purposes (Businger, 1982). 

In stating the generalized conservation equation and deriving from it equations 
expressing conservation of water vapour mass and total moist air mass, we have 
digressed (in the interests of context and along the way obtaining results we will use later) 
from the object of predicting the mean velocity (D) above our bare, level surface. For this 
task we must be concerned with conservation of momentum. Provided one can recognize 
intuitively the appropriate momentum fluxes, it is possible to deduce the laws of 
momentum conservation from the generalized conservation equation, at least if the 
density is constant. For a rigorous derivation one may turn to virtually any textbook on 
pure or applied fluid mechanics, e.g. Batchelor (1985), Schlicting (1968). Conservation of 
momentum is expressed by the Navier-Stokes equations, which, under the restriction 
V « j^= 0 and neglecting the Coriolis effect, may be written 

|L + J i o V u = - l | £ +uV2u (13a) 

| + i l o V v = - i | £ +uV2v (13b) 

^T + u « Vw = - - I E - + uV2w - g (13c) 
ot — p dz 

It is possible to express these equations in the form of the generalized conservation 
equation. 
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The immediate problem is that these equations govern the instantaneous velocity 
rather than the mean velocity we have decided to focus upon. Therefore, one averages 
the equations, integrating each term in time in the same way one would average 
measurements of u(t) itself in an experiment. The steps will not be shown, but the result 
for the streamwise momentum equation is 

Note that (14) has the same form as the generalized conservation equation. 

We need to examine some of the unfamiliar terms which have arisen. For 
example, u2 is the mean square streamwise velocity, and may be expressed as 

u2 = (u + u')(u + u') 

u2 + 2û u' + u'2 

= wi + u'-i (15) 
The last step follows from the rules of the averaging process (a good discussion of which 
is given by Monin & Yaglom (1977)). The result may be familiar from elementary 
statistics. The mean square is composed_of the squared mean plus the variance i?2 = <JU

2 

of the fluctuation. It is common to call u'2 the "power" in u' and the dimensionless ratio 
iu = CTj/u the "turbulence intensity". 

In a similar way, we may show that uw = u w + u'w', where u'w' is the 
"covariance" between fluctuations in u and fluctuations in w. We will see that the term 

ûw + û V -v~- (16) 

whose vertical derivative appears in the 0-momentum equation is (within a factor p) a 
"momentum flux density" composed of convective fluxes due to the mean and fluctuating 
flow plus a molecular momentum flux. The vertical derivative of this flux at the plane z is 
the fluid "drag" on the air at z. 

The importance of covariance terms like pu'w' in the budget equations for the 
mean velocity components was first recognized by Osborne Reynolds, after whom they 
are commonly called the "Reynolds stresses". They are also often referred to as 
"momentum fluxes" and as "turbulent (shear) stresses". Covariances like u'w' are 
tangential stresses, while variances like TF2, "w72 are the "normal stresses". We will 
examine u'w' in more detail later. 
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0. To do so, note that the time average 
constant, 

(17) 

(this follows because the operation of averaging - temporal integration - commutes with 
the operation of spatial differentiation). 

Since we have assumed horizontal uniformity, the horizontal derivative of any 
time-averaged variable vanishes. Hence, 3w/3z = 0 and it follows that w(z) = constant. 
But at z = 0, w = 0 (no flow through a solid surface) so that w(z) = 0 for all z. In fact, this is 
an oversimplification. Webb et al. (1980) show that if the surface heat flux and/or the 
surface vapour flux are non-zero, there is a non-zero mean vertical velocity which, while 
small, must be properly accounted for in order to obtain accurate measurements of the 
vertical flux of minor atmospheric constituents, e.g., C02. 

We may now simplify the U-momentum equation. Assume a steady state 
(3D73t = 0), neglect the molecular momentum fluxes, note w = 0, and 3/3x = 3/3y = 0. Then 

0 . 5 ^ - 1 | 1 (18) 
dz p 3x v ' 

The turbulent vertical momentum flux u'w' varies with height at a rate which depends upon 
the pressure gradient (and in fact, the Coriolis force). However, it is usual to neglect this 
height variation over a shallow layer near the ground (the atmospheric surface layer, ASL). 
We define the "friction velocity" u* = —V(uV)0-

The friction velocity plays a key role in the present theory of ASL flow; in neutral 
stratification it is found that most velocity statistics "scale with" u*. For example, the root-
mean-square vertical velocity fluctuation is observed in neutral stratification to closely 
obey 

o-w = K 2 ) a 5 = 1-3u* ( 1 9 ) 

provided z0 « z « 8 where 8 is the planetary boundary-layer (PBL) depth and z0 is the 
surface roughness length to be defined shortly. The rms values CTU, av likewise depend 
primarily on u* but with a weak dependence on the depth of the PBL. 

Fig. 2 attempts to convey an intuitive feeling for the physical mechanism which 
produces the very significant correlation between u' and w\ The wind increases with 
height in some as-yet-undetermined manner. A parcel descending across the plane zt 

will have w' < 0, and having come from a region where the flow is on average faster, is 
likely to have larger streamwise velocity than the average value at z.,, i.e. 
u' =» Az(30/3z)Zl > 0 (so u'w' < 0). For an upward-moving parcel w' > 0 and we would 

expect a preference for u' < 0. Hence, on average TrV < 0 (for the type of turbulent flow 
envisaged). In a time average sense, "slow" layers of air near the ground are "pulled 
along" by faster layers above and "pulled back" by even more sluggish layers closer to 
ground. This "pull" is mediated by the vertical motion of air parcels. There is therefore a 
time average transfer of momentum from aloft towards the ground (this momentum is 
absorbed by the ground which feels the pull of the air sliding over it). 

Before continuing, let us prove that w = 
form of the continuity equation is, in the case p = 

„ - 30 3v 3w . 
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FIG. 2. Illustrating the origin of the correlation between fluctuations in vertical and 
streamwise velocity in the presence of a vertical gradient in mean streamwise 
velocity U(z). The parcel moving down across z1 carries a velocity excess 
Au ~ Az(dO/dz)z 

We have now made full use of the D-momentum equation, yet we have not 
recovered any prediction of the profile Q(z), and have instead ended up talking about the 
"turbulent momentum flux" u'w'. This is a basic problem which always arises when we 
average the governing equations - we end up with a formulation containing new 
unknowns. It is possible to derive governing equations for the new unknowns, but these 
(higher order) equations will contain still more unknowns. This is "the closure problem". 

The pioneers of fluid mechanics, aeronautical engineering and meteorology had 
no means by which to measure these correlations, and were lead to "parameterize" or 
"model" the unknown fluxes (which are often the flow property of predominant interest). 
T.V. Boussinesq, L. Prandtl, G.I. Taylor, and T. von Karman reasoned that since 
turbulence causes mixing, average fluxes should be directed down the gradient in the 
corresponding average concentration or driving force and should have a magnitude 
proportional to the driving gradient. Under this assumption the vertical momentum flux in 
our system would be modelled as 

u w •K» au 
3z 

(20a) 

where KM is the "eddy viscosity" [m2 s~ 
law of molecular viscosity 

. 9u 

so called because of the similarity to Newton's 

(20b) 
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which gives the molecular momentum flux (i.e., the shear or tangential stress) in a fluid of 
kinematic viscosity v [m2 s_1] in a plane parallel motion with the velocity j^= (u,o,o) 
depending on z alone. 

The molecular kinematic viscosity x> is a fluid property depending on temperature 
and pressure. However, the eddy viscosity (KM) is a property of the turbulence (and, as 
we will see, the source distribution). In most regions of a turbulent flow its magnitude 
vastly exceeds i>. 

The parameterization (20a) of the turbulent momentum flux is an example of what 
is called "first order closure". Similar formulations are used for heat transfer; the turbulent 
vertical heat flux density QH = pcp wT' is modelled as 

Q H = - p c p K H ( | : - r ) (21) 

where KH is the "eddy diffusivity for heat" [m2 s_1] and r is the adiabatic lapse rate, i.e. the 
vertical gradient in mean temperature which exists under well mixed conditions with zero 
vertical heat flux as a consequence of the adiabatic expansion and compression of fluid 
parcels moving along the vertical gradient in atmospheric pressure. Equation (21) states 
that the heat flux is driven by the departure of the lapse rate from the adiabatic lapse rate 
r. The vapour flux density w'pv ' is modelled as 

" ^ P 7 = - K v % (22) 

where Kv is the "eddy diffusivity for water vapour" [m2 s -1]. The analogies to Fourier's 
law of heat conduction and Fick's law of diffusion are obvious. 

It was recognized early on that the eddy viscosity and eddy diffusivities must be 
considered to vary with position in the flow. Schemes to specify the K's were developed, 
often on the basis of an imposed (externally specified) length scale and a velocity scale 
derived from the mean velocity gradient (mixing length theory). These will not be 
mentioned in detail here. To sum up, first order closure or K-theory is the name given to 
the practice of assuming that turbulent fluxes of heat, mass, and momentum are linearly 
related to the mean gradient in corresponding driving force. 

Now we may return to an attempt to deduce the height-variation of u. Adopting K-
theory, and noting our definition of u*, we have 

^ V ~ - l £ = - K M § • (23) 

where u'w' is regarded as height-independent. 

The eddy viscosity is, dimensionally, the product of a length and a velocity. Since 
its function is to specify the effectiveness of turbulent momentum transfer down a mean 
velocity gradient, it is reasonable to postulate that the relevant length and velocity would 
somehow be "characteristic" of the turbulence. G.I. Taylor's (1921) exact theory of 
turbulent mass diffusion in homogeneous turbulence, which we will discuss later, adds 
weight to this supposition. Then we may use u* as a velocity scale characteristic of the 
turbulence. What about a length scale? 
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Far from the ground the remoteness of the solid barrier permits the existence of 
turbulent eddies of large scale (of the order of the PBL depth). However, as we approach 
the ground the typical eddy size is reduced. It is therefore natural to investigate the 
usefulness of the distance above ground (z) as the turbulence length scale. Then 

KM = u* kyZ (24) 

where ky is a proportionality constant named after von Karman, and substituting we obtain 

f)ÏJ U * 

f i = -— (25) 
3z kyZ x ' 

We may now integrate, defining the roughness length z0 to be the height at which U = 0. 
The result is the semi-logarithmic wind profile 

G(z) = ^ l n f- (26) 
Ky Z 0 

There is abundant experimental evidence for the usefulness of (26). There have 
been numerous laboratory and field experiments to determine von Karman's constant, and 
present indications are that k^ = 0.40 (Hogstrom, 1985) with some controversy. The 
equation is valid only for z0 « z « 8; as z -» 0 assumptions invoked in deriving the 
equation may be violated, though in practice it is commonly used even when z >/> z0 

because there is no simple alternative. The roughness length (z0) is an empirical 
parameter related in some way to the detailed character of the surface (Jackson, 1981). 
Note that, provided all restrictions are met (neutrality, horizontal uniformity), the 
momentum flux may be estimated directly from the wind profile (whose slope AD/A Inz is 
u*/^,). Since most other statistics of interest (e.g. aw) may be accurately estimated from 
u*, the wind profile alone provides a wealth of information about neutral surface layer flow 
and turbulent dispersion within that flow. 

Extension to non-neutral stratification 

"Monin-Obukhov similarity theory" is central to the presently-accepted concept of the 
thermally-stratified atmospheric surface layer over uniform terrain. 

"Complete similarity" between two physical systems A and B is said to obtain if the 
governing equations (and boundary and initial conditions) expressed in non-dimensional 
form with the aid of scale factors can be made identical. In the case of the stratified 
atmospheric surface layer, the presence of a heat flux and fluctuations in temperature 
imply that the density is not constant. However, under the "Boussinesq approximation" 
(Businger, 1982; Plate, 1971) one is able to treat the density as a constant except where it 
appears multiplied by the acceleration due to gravity (the buoyancy force in the vertical 
momentum equation) and to retain V • û = 0. The governing momentum equations under 
the Boussinesq approximation may be cast into a non-dimensional form using velocity, 
length, and temperature scales, V, L, T*, respectively. Certain non-dimensional ratios 
involving the (as yet unspecified) scales will appear. The dimensionless governing 
equations can be rendered oblivious to the particular ASL conditions by the scaling choice 
V = u* 

T* = - w f / u * (27) 
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Lmo = u* / (k, (g/T0)T*) (28) 

(Here we have not considered the details of the lower boundary condition which would 
introduce further scales into the analysis.) Lm0 is called the "Monin-Obukhov length" and 
the ratio z/Lmo is used as a stability parameter. The inclusion of kj is conventional but 
unnecessary. 

According to the Monin-Obukhov similarity theory, if we non-dimensionalize ASL 
properties using u*, T*, Lmo, we may expect to form a universal theory (i.e. to find 
relationships which do not depend on stability, wind speed and location). Had we included 
the water vapour conservation equation we would have deduced the desirability of scaling 
absolute humidity using pv* = - w'pv 7u* (and so on for other entities). 

The dimensionless wind, temperature, and humidity gradients are expected to 
conform to 

* " — ( & ) ™ U* dz 

M 3T 
T* dz " ^ ( l - m o ) 

(30) 
\>-mo/ 

5d ££v = * / z \ (31) 
pv* dz \ L m o / 

where the * 's are called the Monin-Obukhov universal functions (the gradients rather than 
the actual properties are dealt with because the absolute values depend on features of the 
underlying surface not included in the similarity theory). 

Similarly, any other dimensionless statistic has its Monin-Obukhov function, e.g. 
aw/u* = «^(z/Lmo). Several major experiments have determined that Monin-Obukhov 
similarity theory is useful and valid in almost all respects, and have determined formulae 
for the universal functions over a wide range of stability z/Lmo. The recent results of Dyer 
& Bradley (1982) are in line with most observations. A critical review of experimental 
difficulties is given by Yaglom (1977). There have also been numerical solutions of 
simplified conservation equations (for the species and its turbulent flux) leading to 
predictions of the O functions in reasonable agreement with observations (Mellor, 1973; 
Lewellen & Teske, 1973). This should be seen as evidence that the necessary 
assumptions in the numerical models are reasonable rather than as "proof" of the similarity 
theory since the latter rests on a solid foundation. 

The "flux-gradient relationships" (29-31) are not in any way dependent upon the 
adoption of K-theory. However, they imply the effective K values 

^M>H'V =kvu*z/<tM,H,y (32) 

We know that O M (0) = 1 (necessary in order to recover the neutral logarithmic 
wind profile) and it is now believed that €>H (0) = <6V (0) = 1 so that in the limit of neutral 
stability the eddy viscosity and all eddy diffusivities are equal. 

It is essential to remember that Monin-Obukhov similarity theory as outlined 
applies to the horizontally-uniform ASL within which we have noted that the momentum 
flux is approximately height-independent and for which it can, by similar means, be shown 
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that the heat and vapour fluxes are (more rigorously) constant with height.2 This 
certainly precludes use of these relationships within a canopy (where the fluxes are NOT 
constant with height). Furthermore, no length scales relevant to the roughness structure 
of the underlying surface have been included, so these results are restricted to heights 
well above the surface, say z » z0. 

Extension to flow above a tall canopy 

The experiments determining the Monin-Obukhov functions have been performed over 
extensive flat surfaces covered by vegetation whose height is small compared to the 
depth of the ASL, the heights of measurement, and the magnitude of the Monin-Obukhov 
length. Therefore, in these experiments the sources (sinks) of heat, water-vapour, and 
momentum essentially coincide (or at least are separated by a distance which is much 
smaller than the depth of the ASL, the Monin-Obukhov length, and the height of 
measurement). 

It is common to apply the Monin-Obukhov framework to profiles over tall canopies, 
most crudely by simply replacing z with z - d, where d is called the "displacement height" 
and is often chosen as an arbitrary fraction of canopy height or by selection of a value 
which forces the above canopy neutral wind profile to be semi-logarithmic. 

There are dangers here. Often the effective height z - d (which is limited by the 
need to take measurements within the perhaps-shallow constant flux layer over the 
canopy) will not be large compared to the scales of surface roughness (notably canopy 
height) and a possible separation in the effective source heights for heat, vapour, and 
momentum. Consequently, the effective K-values do not necessarily obey (32) (with the 
a> values being those obtained over short crops or bare surfaces). An equivalent 
statement is that fluxes deduced from gradients using #'s tuned to measurements over 
short crops may be wrong. 

These problems are discussed in detail by Raupach (1979) and Raupach & Legg 
(1982). We will see that the situation of coincident ground-level sources is a very forgiving 
one in the context of a search for well-defined and reasonably universal relationships 
between fluxes and gradients. We will also see that the opposite is true of the tall crop 
situation; investigation of the mechanisms determining the turbulent flux in and above a 
canopy shows that K-theory is untenable in and close above a canopy. The # functions 
above a tall canopy can be expected NOT to be universal or equal to those determined 
over short crops.3 

Note that the slow warming and cooling of air layers, which we neglect when assuming a steady state, is a 
direct result of very small (practically immeasurable) changes in the vertical heat flux across the layer. 
Likewise for changes in the mean humidity. 
The question of the validity of the Bowen Ratio method, specifically the assumed equality of the eddy 
diffusivities for heat and water vapour above a tall canopy, was raised in discussions. G.W. Thurtell noted 
that provided the position of measurement is several diffusion length scales above the (perhaps seperated) 
effective source levels, the diffusivities should take on the "far field" values defined later, and therefore the 
assumption of equality of the diffusivities should be adequate. Since the diffusion length scale is of the order 
of 1/3 z to 1/2 z, Bowen Ratio measurements above about z = 2H should be safe (in respect to the 
assumption of equal K's). 
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OBSERVATIONS OF CANOPY TURBULENCE AND TURBULENT TRANSPORT 

It should first be stated that measurement of canopy flow is not easy. The flow is usually 
extremely turbulent, in the sense that the typical velocity fluctuations may be much larger 
than the average flow rate. Anemometry in these conditions requires special care. 

There have been a very large number of experiments on canopy flow (including 
real or model canopies). Rather than attempt to assemble and review these in the space 
available, the reader is referred to the review by Raupach & Thorn (1981) which will 
provide a reasonably recent point of departure for those seeking out specific experiments. 
Later experiments may be traced from other references given here. 

We can envisage a (reasonably dense) canopy as having, in a qualitative sense, 
an elevated "active surface", by which is meant a predominant site of radiation exchange 
(and related heat and vapour production) and momentum absorption. This is not meant to 
imply that a plane active surface is a legitimate quantitative concept, but to aid the reader 
in forming an intuition for why wind, temperature, and humidity vary in the way they do in a 
canopy. 

Needless to say, there is an endless variety of possible canopy profiles of wind, 
temperature, humidity, etc. The following examples have been chosen simply for 
convenience, to illustrate the discussion of the key processes at work in setting up the 
turbulent canopy environment. Most of the observations available are, like those given 
here, single-point time-average values collected at various heights in what is subjectively 
judged to be a "horizontally uniform" canopy, without any attempt at spatial averaging. It is 
common to "scale" (make dimensionless) the observations pragmatically in order to 
minimize sensitivity to varying conditions. 

Mean wind and momentum flux 

Fig. 3 shows the profile of mean streamwise velocity 0 and Fig. 4 the profile of the vertical 
flux of streamwise momentum u V within a mature cornfield of height H = 2.21 m at Elora, 
Ontario, Canada (Wilson, 1987). These statistics have been normalized by the friction 
velocity u* = yj - (UWJH~

 T n e c l o s e connection between the behaviour of u V and û has 
already been discussed. The key factor rendering the canopy momentum balance (and 
therefore flow) very different from the simpler flow considered earlier is the drag of the 
plant parts on the airstream. 

By Newton's law of action/reaction, the drag (which fluctuates in time) constitutes 
an ongoing drain of momentum from the flow. No momentum loss or "sink" term appears 
in the Navier-Stokes equations (13) which in their given form can be applied only within 
space occupied by fluid, incorporating appropriate boundary conditions at solid 
boundaries. A convenient way to formalize conservation in flow through the canopy is to 
spatially-average the conservation equations (this will be pursued later). The result of 
such an operation is the appearance of new terms in the equations for the spatially-
averaged property which correspond to the net influx-efflux across solid/fluid boundaries. 
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FIG. 3. Observations of the mean streamwise velocity within a corn canopy. The line is 
the second-order simulation of Wilson (1987). 
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FIG. 4. Observations of the turbulent momentum flux within a corn canopy. The line is 
the second-order closure simulation of Wilson (1987). 
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The removal of momentum from the flow implies (see Fig. 5) that less momentum 
is transferred downwards and out of a given canopy layer than is transferred into the top; a 
vertical gradient in the momentum flux u V . This is clearly seen in the observations of Fig. 
4. We may now understand the very low velocities deep in the canopy. A layer of air 
deep in the canopy receives (on average) a weak supply of momentum with which to 
overcome the retarding drag of the plant parts and the even slower-moving air beneath it. 

Note that the drag on the plant parts is transferred down the stalk and roots to a 
soil volume. Thus ultimately the ground absorbs the entire momentum flux fed down from 
above the canopy, but not, as in the case of a bare soil, on a shallow layer at the surface. 

within 
canopy. 

layer 

Momentum H Flux 

J^«%^ Leaf drag 
extracts 

ff'K > momentum 

FIG. 5. Illustrating the divergence of the downward momentum flux across canopy 
layers. Since the drag of the vegetation extracts streamwise momentum from 
the flow, the downward momentum flux out the bottom of a canopy layer is less 
than the supply through the top of the layer. Successively lower layers receive a 
successively smaller supply of momentum. 

Turbulent velocity standard deviations and turbulent intensities 

The standard deviation au is the symbol givenjo the root-mean-square value of the 
streamwise velocity fluctuation u', i.e., ou = (u'2)0-5. It is convenient to use ou (and 
corresponding statistics ov, aw for the other flow directions) to characterize the degree of 
turbulence in the canopy, either in absolute terms or in relative terms by forming the 
"turbulence intensities" iu = ou/u, etc. The velocity standard deviations have a profound 
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influence on turbulent diffusion and, more broadly, all canopy transport processes. The 
combination 

k = ô K 2 + °v2 + Gw2) (33) 

is called the "turbulent kinetic energy" (TKE; strictly, TKE per unit mass) and is the focus 
of attention when one considers conservation of mechanical energy in turbulent flow (an 
especially complex balance in the case of canopy flow). 

Figs. 6 and 7 show the vertical variation of au and CTW within the Elora corn canopy 
(although not shown, these are expected to be fairly constant above the canopy). It is 
immediately apparent that in absolute terms the fluctuations are reduced drastically in 
magnitude below about 0.8H. However, Fig. 8 shows that relative to the mean wind the 
turbulent fluctuations assume an increased importance deep in the canopy, with CTU/U 
taking on values as high as 4. 

This implies that the air tends to waft from place to place, back and forth and 
around, in the bottom of the canopy, with the overall time-average rate of drift being quite 
low compared to instantaneous velocities. An immediate implication is that leaf boundary-
layer resistances should not be expected to scale with the average velocity 0. 
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FIG. 6. Observations of the r.m.s. stream-
wise velocity fluctuation within a 
corn canopy. The bar atz = H 
indicates ±1 sample standard 
deviation for a sample of size 
n = 8. 

FIG. 7. Observations of the r.m.s. 
vertical velocity fluctuation 
within a corn canopy. 
The bar at z = H 
indicates ±1 sample 
standard deviation fora sample 
of size n = 8. 
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Temperature and vapour pressure 

Fig. 9 shows the mean profile of potential temperature (potential here implies that a small 
correction has been applied to indicate the temperature which would be observed if the 
sample was compressed adiabatically to the ground-level pressure), water vapour mixing 
ratio, and carbon dioxide concentration observed near noon in a horizontally-uniform pine 
forest near Canberra, Australia (Denmead & Bradley, 1985). One may observe the 
maximum in temperature and the minimum in C02 concentration within the crown layer 
where much of the incoming radiant energy is absorbed leading to strong heating, 
transpiration, and photosynthetic rates. Also shown are the (directly measured) turbulent 
vertical fluxes of heat, water vapour, and C02. Evidently, a substantial fraction of the total 
évapotranspiration was contributed by vapour loss from the ground cover. The startling 
aspect of Fig. 9 is the clear demonstration of counter-gradient (negative K) transport, an 
impossibility in the framework of first-order closure. Near ground heat is on average being 
transported from regions which are cold (on average) to levels which are warmer (on 
average). 
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FIG. 8. Observations of the 
turbulence intensity Ou/u 
within a corn canopy of 
height ~2.2 m. 
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FIG. 9. Observations of the vertical gradients 
and corresponding fluxes of potential 
temperature (0) specific humidity (q) 
and carbon dioxide concentration (c) 
for a pine forest. Re-printed with 
permission from Denmead & Bradley 
(1985). Note the counter-gradient 
fluxes (QH, QE are expressed in 
Wrrr2). 
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Counter-gradient transfer in the lower canopy occurred in almost 70% of the 
observations. Denmead & Bradley give evidence thai their flux measurements were 
accurate, and these data stand as convincing evidence that one cannot use K-theory in 
the description of canopy transport. 

We could now go on to investigate why K-theory fails in a canopy and to examine 
alternatives. Before doing so it is valuable to discuss some novel canopy flow 
observations which will help to explain the inapplicability of K-theory. 

The intermittency of turbulent exchange within a canopy 

A relatively recent technique giving insight into the mechanisms of turbulent flow and 
transport is "conditional sampling" in which a measurable "indicator function" is used to 
classify each measured value of the variable of interest into one of a number of classes. 
Conditional sampling analyses of flow in and above plant canopies have been reported by 
Finnigan (1979), Shaw et al. (1983), Coppin et al. (1986), Raupach et al. (1986), 
Baldocchi & Hutchison (1987), and Baldocchi & Meyers (1988). These studies have 
revealed the highly intermittent nature of canopy turbulence and turbulent transport and 
the great importance of occasional penetrations of the canopy by gusts emanating from 
the boundary-layer above the canopy. From time to time a localized region of the canopy 
air layer is "flushed out" by a downward gust of wind from above. Between these (erratic) 
events the canopy is relatively calm, with mixing proceeding on a much smaller scale. 

We will later discuss a "budget equation" for the vertical vapour flux w'pv ' which 
states that there is a balance between mechanisms creating flux, a mechanism destroying 
flux, and a "turbulent transport" mechanism which imports or exports flux from other 
regions of the flow. Analysis of similar equations (for the heat and momentum fluxes) has 
shown that, in correspondence with the above suggestion of the vital importance of 
occasional gusts, deep within the canopy the local production rates are negligible relative 
to the rate of import from higher levels. 

We can sum up by saying that much of the activity and exchange deep in a 
canopy occurs in brief intervals during and immediately following the occurrence of a 
penetrating gust of large scale (and low repetition rate). Much of the turbulence observed 
deep in the canopy results from the wholesale advection into the canopy of large volumes 
of air (by even larger eddies) within which strong gradients have been created prior to 
dislodgement into the tower canopy. 

THE FAILURE OF FIRST-ORDER CLOSURE (K-THEORY) 

Intuitive considerations 

It must be remembered that the vertical flux density w'(|>' of an entity whose instantaneous 
concentration is <|> is an average of the product of fluctuations in vertical velocity and 
concentration observed at a fixed point in space x over a span in time (t,t + x) 
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! H* 
w'è' = - J 

X t 

w'(x,t') <j>' (x,f) dt' (34) 

Fig. 10 attempts to direct the reader to think of transport through an area A of a 
reference plane z1 from a Lagrangian (parcel-following) perspective. The parcels at z1 

within A at time î are coming from various directions with various velocities and with 
various concentrations. These parcels are also identified at some earlier time t - At. 
Referring back to the generalized conservation equation (6), if we identify the total flux of <j> 
as u<j> - D̂ ,V(j), and if the entity <j> is not created or destroyed within the field, we have 

dt 
D6V2$ (35) 

where d/dt, as earlier, refers to the parcel-following derivative. If we neglect molecular 
diffusion then d<j>/dt = 0, i.e. each parcel retains its concentration §. In fact, molecular 
diffusion enters the picture to slowly change the <j> of any parcel, but over limited intervals 
(t1 ,t2) spanning t we may consider a parcel to have been marked with <}> at t1, to cross z, at 
t, and to retain its <J> until t2. 

z, 

Parcels carrying <t> 

jw^Tj: 

D \ 

a «« 
£( at t -At 

Jo 
i ) 

<A(x,y,z,t) 

FIG. 10. A schematic snapshot showing the origin at an earlier time t - At of parcels lying 
on the plane z1 within area A at time t. The concentration (<p) of each parcel may 
be considered invariant over short periods of time, and each parcel therefore 
carries the concentration 4>(x,y,z,t - At) with which it was "marked" at some 
earlier time and different location. 

Now let us remember that Fig. 10 is a snapshot in time and that our average flux 
over time x must be considered to be the superposition of a very large number of 
snapshots. It follows that the average vertical flux is a property of the full, time-dependent 
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concentration and velocity fields (which are themselves correlated) over a large volume 
centred about the point where our flux must be measured. 

K-theory attempts to model the average vertical flux as 

"w>r= -K H (36) 

which involves only two quantities, K and 3<j>/3z evaluated (as time averages) at a single 
location^on the plane of interest zv Instead of retaining information about the time-
dependent concentration field in the region we have only the average vertical gradient at 
one point. The K, which is allowed to vary in space (and with "external" variables such as 
u* and Lmo) must somehow encapsulate all the relevant information about the range and 
intensity of length scales involved in the transport process. From this perspective we can 
see that we might consider ourselves lucky if K-theory was of any use. 

Now let us imagine a time-varying concentration field which has relatively weak 
gradients in the horizontal (at any time) compared to the vertical direction, and, 
furthermore, whose instantaneous vertical gradient at j<, (3((>/3z) is generally not very 
different from the time average value 3<t>/3z and changes by a small proportion of its 
absolute value over a vertical distance £(the largest active eddies). In this (special) case 
the mean gradient 3<j)/3z tells us essentially all we need to know in order to envisage the 
net flux brought about by eddies of scale <t. If we replace u in Fig. 2 with <j>, we may 
argue (qualitatively) that a parcel crossing z1 from a higher point of "marking" carries 
across z1 an excess which (in view of the assumed similarity of the mean and average 
concentration profiles) is approximately A0 = Az 3<j)/3z. K-theory may be reasonable in this 
case. 

A detailed discussion along these lines is given by Corrsin (1974) who gives as an 
essential (and much earlier recognized) prerequisite to the validity of K-theory the 
requirement that "the characteristic scale of the transporting mechanism...must be small 
compared with the distance over which the mean gradient of the transported property 
changes appreciably". The underlying physical need for this restriction has been briefly 
outlined here, and we will see that turbulent transport in a canopy does not conform to this 
restriction. 

Rigorous investigation of K-theory for simple flows 

The preceding qualitative discussion of the generally weak basis of K-theory may be 
substantiated by discussing the implications of G.I. Taylor's (1921) rigorous Lagrangian 
theory of turbulent dispersion in homogeneous turbulence ("homogeneous" implies that all 
statistics of the flow are independent of position). 

Consider an instantaneous source which releases a "puff" of <j> at a time t = 0 and 
location xs in homogeneous turbulence. The vertical "spread" of this puff at later times 
may be measured by the mean square displacement relative to the initial height zs 

(az
2(t) = ( z - zs)

2), where the average is over all molecules of § and over many 
realisations of the release. Taylor's exact analytical solution for this measure of the 
spread is 
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t 
0z2(t) = 2aw2 J (t-É) RL (4) dÇ (37) 

0 
Here RL (Ç) is the Lagrangian autocorrelation coefficient for the (Lagrangian) 

vertical velocity 

RL(Ç) = w(t) w(t + Ç) /oy2 (38) 

i.e. the average correlation between values of the vertical velocity of a specific fluid 
element at times separated by an interval %. 

Clearly RL (0) = 1 (by definition of ow and pre-supposing, as may be proven for 
homogeneous turbulence, that the Eulerian and Lagrangian velocity variances are equal) 
and we expect RL (\) -» 0 as % -» °°. The Lagrangian integral timescale xL is defined by 

tL = J RL® dÇ (39) 
0 

and may be considered to be an estimate of the typical temporal persistence of the fluid 
element vertical velocity. These Lagrangian properties are difficult to measure. 

Equation (20) has short arid long time limits 

az
2 = aw

2 t2 V t L « 1 (40) 

CTZ2 = 2GW
2 t xL t / t L » 1 (41) 

where "short" and "long" are judged relative to the Lagrangian time scale tL. 

If this diffusion problem is instead analyzed by adopting the Eulerian approach, 
expressing mass conservation as in (6) and assuming fluxes are related to mean 
gradients via K-theory with a spatially-constant eddy diffusivity K = K(OW,TL), the result is a 
prediction that for all t the spread oz

2 is proportional to t. Now since Taylor's solution is 
rigorous, a deficiency in K-theory is revealed. It may be shown (Batchelor, 1949; 
Csanady, 1973) that the K-theory solution can only be bent to conform to the correct 
solution by giving up the notion that K depends only on flow properties and accepting that 
it depends upon the time t since the puff of 4> was released, 

t 
K(t) = cw

2 J RL(|) dÇ (42) 
0 

t 
Noting that J RL (%) d£ = i L , we see that only if t » xL do we have a constant 

0 
diffusivity K = K00= cw

2 xL = ow £ depending only on properties of the turbulence (the 
"far field" limit). At very short times since release of the puff the effective K is much 
smaller than Kœ, vanishing at the source (in reality the diffusivity does not vanish at the 
source, but decreases to the molecular diffusivity over a short time %' « TL which is a 
characteristic timescale for the disturbed flow on the boundaries of the physical source). 

In passing we should note that (42), a result stemming from the Lagrangian 
analysis, strengthens and quantifies the earlier assumption that K (where useful) should 
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be interpreted (as is obvious dimensionally) as the product of a turbulent velocity scale 
and a turbulent length scale. 

G.I. Taylor's results may be applied to diffusion from a steady source of $ in the 
presence of a steady streamwise wind of strength u by simply noting that at any distance x 
from the source, the material has been diffusing for a time î = x/u. In real, inhomogeneous 
turbulence, Taylor's results are not directly applicable, but they provide vital direction. Fig. 
11 shows the time-average plumes from an elevated and a ground-level source in 
surface-layer flow in which ( as a result of the presence of a solid wall) the turbulence time 
and length scales increase linearly with distance z from the wall. Also indicated on the 
diagram are the mean concentration profiles $(z) in the plume at various distances from 
the source. Close to the elevated source there are dramatic changes in dfy/dz over 
distances which are much smaller than the length scale CTW TL(ZS) at that height: from 
earlier reasoning we know classical K-theory is invalid in this region, and this is confirmed 
by (28), (which may still be used for guidance though this is no longer homogeneous 
turbulence), which states that indeed the effective K in this region is not the convenient 
flow property K00= aw

2 tL which we would have liked it to be. 

Elevated 
source 

of 

Source 
at 

ground 

C^> Wind 

Turbulence 
length scale 

FIG. 11. Schematic ground-level and elevated plumes <j>(x,z) from continuous sources. 
The elevated plume has a cross section which is (near the source) narrow 
relative to the turbulence length scale (also shown), while the ground-level plume 
is always thick relative to the (very small) turbulence length scale at ground. K-
theory fails for the elevated source. 

In contrast, there is no problem with K-theory for ground-level sources and sinks. 
This is because the turbulence length and time scales become very small at the source 
(i.e. at the ground) so that by all our earlier considerations we can expect that the effective 



Turbulent transport within the plant canopy 69 

K is simply K^. Many comparisons of theoretical solutions with experiments on diffusion 
from ground-level sources have confirmed the usefulness of K-theory for this case. 

Why does K-theory fail in canopy fbw? 

In the light of the preceding discussions of K-theory it is not hard to understand why 
K-theory is an inadequate model for canopy transport. 

Firstly, given the differential absorption of radiant energy we may expect gradients 
of variables involved in the energy balance to change rather rapidly with height (as is the 
case, for example, in the pine forest profiles of Fig. 9). But vertical mixing occurs not only 
on length scales i < H, but on much larger scales - in fact, mixing is particularly intense 
during the penetration of gusts from the boundary-layer above the canopy. Hence, we 
conclude that the restriction stated by Corrsin (1974) for the validity of K-theory is not 
necessarily obeyed by canopy flow; the length scale for vertical exchange may exceed the 
length scale for changes in the mean gradients. 

Secondly, at a point in mid-canopy the mean concentration <j> (heat, water vapour, 
...) is a superposition of contributions from fluid elements arriving from outside the canopy 
and from "marking contact" with leaves at a range of distances upstream and with the 
underlying surface. It simplifies the discussion if we specify <j> to be an entity contributed to 
the airstream only by leaves (say, water vapour in an otherwise dry flow). 

Let us consider first the plume from a single leaf and label its contribution to the 
mean concentration and mean vertical flux at our point of observation^ as <t>j, Fj. 

From earlier considerations we can expect the effective diffusivity for the material 
from this source to be independent of the source (leaf) proximity d to the point of 
observation only if the travel time from the source to Xp obeys 

d/u » xL (43) 

The Lagrangian timescale within the canopy is expected to be of the order of 
z/aw(z). Looking at Fig. 7 for the Elora corn canopy we have then, tL(H/2) ~ (H/2) / 
(0.5 u*H) while typically û(H/2) ~ 0.5 u*H (Fig. 3). 

Then, for the corn canopy, restriction (26) requires d » H/2. Only the 
contributions from leaves much further away than about H/2 may be expected to diffuse in 
the region of̂ Cp with the far-field diffusivity ow

2 tL . The plumes from nearby leaves, 
whose contributions will likely dominate the total concentration field (since each individual 
plume is rapidly diluted with distance from its origin) will behave with an effective diffusivity 
Ke < Ko» = ow

2 TL> ' e - w e a r e ' n *ne " n e a r fte'd" °* many leaves. 

The overall eddy diffusivity is, by definition, (summation convention not implied by 
repeated subscript) 

I K : ? 
K = - L_ = ——2L. ( 4 4 ) 

" ill X^/dz 
3z Y| 

and is therefore a weighted average of the eddy diffusivities for the individual contributing 
plumes. Plumes of greater strength (nearby sources) have larger weights in the average. 
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Consequently, the effective bulk diffusivity is dependent on the source distribution, is 
heavily weighted towards the individual diffusivities for material from nearby leaves, and 
may be considerably smaller than the far field value CTW

2 tL. 

We therefore cannot expect canopy transport to be well-described by first order-
closure with effective diffusivity CTW

2 TL imposed by the flow alone. 

How can the flux be directed against the mean gradient? 

In order to prove that counter-gradient transport is a physically possible phenomenon, let 
us consider a very simple one-dimensional diffusion problem in which two parallel 
continuous plane sources of infinite extent are placed at heights zs1, zs2 in an infinite 
domain (no barriers) occupied by a fluid in homogeneous turbulent motion. Initially we will 
assume the two sources have equal strength Q [kg nrr2 s~1]. We will label the average 
verticaljuxes and average concentrations of the (identical) additives from each source as 
Fi, F2, <)>!, (t>2. 

By symmetry, and assuming a steady state, we can easily conclude that half the 
material emitted from each source goes up, and half down, i.e. the mean vertical flux of <|)1 

is 

F^ = Q/2 z>zs1 (45) 
= — Q/2 z<z s 1 

Further, according to classical K-theory, we have a constant concentration gradient 

£ = - F t / K (46) 

which changes sign discontinuously at the source (z = zs1) and the eddy diffusivity K 
depends only on the turbulent motion. An identical situation prevails for the fluxes and 
gradients of 4>2. Consequently, the average vertical flux of the additive in the region 
between the two sources is zero (the average upward flux of ^ cancels the average 
downward flux of (j>2), while above the upper source we have an upward flux Q and below 
the lower source a downward flux Q. 

Fig. 12 shows these individual fluxes and the corresponding individual (4 ,̂"$ )̂ and 
combined (^ + lf2) concentration profiles according to the classical K-theory argument. In 
the region between the sources there is no flux and no gradient of $^ + ̂  (In any real 
approximation to this ideal one-dimensional situation, the finite upstream extent of source 
would result in the fluxes falling off in magnitude far from the sources with corresponding 
reduction in gradients and everywhere positive, or zero, concentration.) 

But classical K-theory is wrong, and the effective diffusivities K^, K2 depend on 
proximity to the respective sources, becoming very small at the source (with 
correspondingly large concentration gradient). Fig. 12b shows the individual and 
combined concentration profiles which must be expected in the light of a rigorous theory of 
diffusion (note that there is no alteration of our assignment of the fluxes). Now, between 
the two sources, we have zero flux, but at only one point, z = (zs1 + zs2)/2, does the 
vertical gradient of <jTJ + §~2 vanish. We have a region of concentration gradient without 
flux. 
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FIG. 12. Infinite plane sources of identical material 0,,02 placed at zsi,zs2 in an infinite 
unbounded domain of homogeneous turbulence. The source strengths are both 
Q. The mean vertical fluxes from each source and in total are shown. The left 
hand and middle diagrams show schematically the profiles of <j>1,<p2, <j>i + <j>2 

according to classical K-theory and corrected K-theory, respectively (i.e. in the 
middle diagram the effect of source proximity, which is to reduce the effective K 
and therefore increase the concentration gradient, is accounted for). 

The final step in this argument (due to G.W. Thurtell) is to allow one of the 
sources, say the upper source, to be slightly stronger than the other. Now there is a net 
downward flux in the region between the sources. Since we can make the difference in 
source strength arbitrarily small, it follows that this flux runs against the mean gradient in 
the region near, and just above, the lower source. 

Raupach (1987) has performed simulations of turbulent diffusion in such a system 
of distributed sources using the rigorous Lagrangian theory and has shown that, 
depending on the strength and spacing of the sources, a counter-gradient flux of the 
nature of those observed in the Urriara pine forest (Fig. 9) is indeed predicted. 

As a final comment, it should be noted that the criticisms of K-theory expounded 
here apply equally to the use of an aerodynamic transfer resistance to parameterize 
turbulent transport within the canopy. 

SECOND-ORDER CLOSURE 

We have seen that the microclimatic variables in the canopy airstream adjacent to 
transpiring leaves fluctuate dramatically in time; the fluctuations in airstream temperature 
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are not necessarily small compared to the mean leaf-air temperature difference, the 
fluctuations in airstream vapour pressure not necessarily small compared to the mean 
stomatal cavity - airstream vapour pressure difference. Therefore specification of the 
mean canopy microclimate is not as satisfactory (from the point of view of integrating leaf 
transpiration rate) as a knowledge of the full time-dependent properties. 

However, for the time being it is enough of a challenge to predict even the time-
space average properties, so we will pre-suppose that this is a worthy aim and may lead 
to a better (if more complex) formulation of canopy évapotranspiration than the simple 
models in use at present. We have already seen that first-order closure is inadequate. 
We are therefore led to examine "second-order closure" as a means towards prediction of 
the time-space average properties <ë>, <T>, <ù>. 

We must average the conservation equations (i.e. integrate the equations in time 
and space) with recognition of the fact that within our averaging volume there may be 
"excluded regions" occupied by solid rather than fluid (and that heat, mass, momentum 
are transferred across the boundaries between solid and fluid). The formal methods for 
averaging the equations have been developed by Wilson & Shaw (1977), Raupach & 
Shaw (1982), and Finnigan (1985). 

We will assume 

(i) that any averaged quantity <$> is constant in time (steady state) and in 
horizontal planes (horizontal uniformity), 

(ii) that molecular diffusion may be neglected relative to turbulent transport, 

(iii) dispersive correlations may be neglected (a dispersive correlation <ë"<j>"> 
arises when the spatial departures 8" = © - < © > , cji" = (j> - <$> are 
correlated in space. The complication of dispersive correlations will be 
neglected, not because this is generally permissible, but because otherwise 
a multi-dimensional treatment is necessary. Finnigan and Raupach (1987) 
argue that the dispersive flux is probably not very important if the foliage 
forms a fairly uniform layer without distinct periodicity. 

(iv) that radiative divergence occurs only due to the presence of vegetation 
where it affects the thermodynamic energy balance through a flow of 
sensible and latent heat into the airstream, 

(v) that there is no suspended liquid water and therefore no vapour/liquid phase 
change occurring in the airstream. 

Under these restrictions and simplifications, conservation of streamwise 
momentum, water vapour, and thermodynamic energy may be expressed (for details of 
the averaging procedure, see Finnigan, 1985) as 

3 < w V > 
— £ = Su (47) 

3<wTp7> 
ST1- = Sv (48) 

è <w7=F> = SH (49) 
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Here Sv and SH are the (suitably averaged) rates of transfer of vapour and heat into the 
airstream from the vegetation, and in the light of the single leaf combination equation, we 
know the instantaneous rate depends on the local radiation conditions, temperature, 
vapour pressure, wind speed, stomatal conductance, and leaf area density. Su is the 
average rate of extraction of streamwise momentum from the flow due to viscous and form 
drag on the plant parts. This is commonly, and for most purposes fairly satisfactorily, 
parameterized as 

Su = - c d a < û > |<û> I (50) 

This simple formulation states that the mean drag is opposed to the mean flow and is 
proportional to the square of the velocity, the amount of vegetation present (specified by 
the leaf area density a(z) [m2 m-3]), and an effective drag coefficient cd. 

In order to obtain the vapour flux <w'pv '> at z = H (the canopy évapotranspiration) we 
need the vapour source strength Sv(z) at all levels and the soil contribution <w'pv '> 
which itself depends on the canopy microclimate. Of the factors determining Sv(z), only 
the short-wave radiation balance throughout the canopy might be considered "decoupled" 
from the canopy environment (i.e. to affect but not be affected by the canopy environment; 
this can only be true for short periods of time). The net long wave radiation balance 
depends upon the temperature distribution within the canopy, while the stomatal 
conductance depends on several environmental factors in addition to plant water status 
(which is linked to soil water status). 

Because (47), (48) and (49) (with Su, Sv, SH parameterized using average airstream 
properties) are unclosed and we have rejected first-order closure, we must obtain "budget" 
fconservationTtransport") equations for the turbulent fluxes themselves from the rigorous 
conservation equation for the instantaneous velocity, temperature, and vapour pressure. 
The procedure for doing this is straightforward if spatial averaging is not necessary 
(Busch, 1973; Plate, 1971). When both temporal and spatial averaging are necessary and 
the flow domain contains plant parts, the derivation of the budget equations is quite 
complex. The reader interested in details, is referred to the comprehensive derivation 
given by Finnigan (1985). 

An approximate budget equation for the average vertical flux of water vapour is 

| < ^ P 7 > = o = - <w7"2> ^ S > + f <p7f> -<2SL M > 
3t Kv 3z T0

 Kv p 3z 
GP BP D 

- ^ <w'w-pv'> (51) 

TT 

Budget equations of a similar form may be derived for a multitude of other 
covariances and variances, but (51) will serve as a prototype. Here, in addition to the 
restrictions and simplifications specified earlier, several terms which derive from the 
molecular diffusion terms in the basic conservation equations have been neglected, as 
have what Finnigan calls drag and waving source production. Because of these 
simplifications, (51) is in fact no different from the equation one would obtain without the 
additional spatial averaging (see, for example, Launder, 1978). 
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Equation (51) states that the "level" of <w' pv'> at any height z in (or above) the 
canopy is steady (a pre-supposition) as a result of the balance of a number of 
counteracting mechanisms which control the correlation between w' and pv '. Some of 
these terms act to increase and some to decrease <w'pv '>. 

It is no surprise that new unknowns have arisen from the averaging procedure. 
We need not consider <w'2> a new unknown, since we may, by steps similar to those 
leading to (51), derive a conservation equation for each of the variances <u'2>, <v '2>, 
<w'2> as well as the other relevant fluxes <u'w'>, < w T > . The same comment holds 
for the scalar covariance < p v T ' > . In each of these additional equations there will, 
however, arise further new unknowns whose form is typified by those arising in (51). 

The terms in any of the conservation equations of fluid mechanics, may be 
classified as "storage" terms, "source/sink" terms (i.e. "production" or "destruction" terms) 
or as "transport" terms. Whenever the spatial derivative of a mean quantity appears in a 
budget equation it is called a "transport term" for the simple reason that when integrated 
throughout any volume such a term reduces to a difference between influxes and effluxes 
through the walls of the volume, i.e. transport from a different region of the fluid. 

In (51) there are no transport terms due to the mean flow because we have 
assumed horizontal homogeneity and that there is no mean vertical velocity. The sole 
transport term is that labelled *TT", "turbulent transport", and, but for the existence of this 
term, the balance controlling <w'pv '> would consist of only "local" production and 
destruction. The terms in (51) may be interpreted as: 

—„ 3 <p^> 
(a) GP, "Gradient Production", - <w' 2 > —rr— 

There are no new unknowns here. Because of the explicit appearance of w'2 it can be 
seen that prediction of the turbulent velocity variance(s) is an integral aspect of a 
physically-sound model of canopy évapotranspiration. The gradient production term is 
non-zero whenever there exists a mean gradient in the absolute humidity within a 
turbulent (<w72> * 0) flow. For an intuitive feeling for its meaning we can apply the 
argument used earlier in connection with the momentum flux u'w' (replace U with < j \ > in 
Fig. 2). For example, if < j \ > decreases with increasing height, upward-moving parcels 
(w' > 0) tend to carry past the reference level an excess of water vapour pv ' > 0 and vice-
versa for downward-moving parcels. This contributes towards <w'pv '> > 0. 

(b) BP, "Buoyant Production", ^ - <pvT'> 
'o 

Temperature fluctuations (TO imply the existence of fluctuating buoyancy forces (as in fact 
do fluctuations in humidity, since moist air is lighter than dry air; the moisture contribution 
to buoyancy can often be neglected, but if it must be included, one may formulate the 
buoyancy term in the vertical momentum equation using the virtual temperature). If warm 
parcels (which will tend to rise) are also (in a statistical sense) moist, we have a 
mechanism contributing towards an upward flux of moisture. 

(c) D, "Destruction", _ < Ex. | Ë > 
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This term is believed to be the dominant agent destroying correlation between pv' and w'. 
It is possible and common to split terms like this into a transport term ("pressure 
transport") and a "pressure-fluctuation x property - fluctuation gradient" term ("pressure 
destruction"). Here we will simply examine the term in its basic form given above. We 
know that an instantaneous pressure gradient 3p73z < 0 will fend to induce a w' > 0. If the 
occurrence of such a pressure gradient were correlated with pv ' < 0, say, then we would 
expect this to result in an association of p v ' < 0 events with w' > 0 (i.e. 
pv'w' < 0, downward instantaneous flux). But why would pv' < 0 be associated with 
3p73z < 0? The instantaneous pressure gradient seems a function of the kinematic state 
of the system, and why should this be correlated with concentration fluctuations of an 
(almost) passive additive, water vapour? The answer is probably that there will be no 
such association (between pv ' and 3p73z) unless there is preferential inhomogeneity in 
the distribution of water vapour, i.e. unless there is a flux w'pv ' . Let us assume 
w'pv' > 0. Each downward-directed gust of air will carry relatively dry air, and its approach 
to the (blocking) ground may produce a pressure gradient 3p73z < 0. As argued, such an 
association will act to drive w'pv' in the negative direction. 

This (hand-waving) argument leads to the supposition that a simple model for this 
term might be 

_ < £ £ ^ > = _ < w'Pv' > i%% (52) 

where xt is an unknown timescale. This is a "flux-killer" term and many higher-order 
closure models do employ such a simplification, though more complex models have been 
proposed (Launder, 1978). 

g 
(d) TT, "Turbulent Transport", - T - <Ww' pv'> 

This is a new unknown which, in the context of numerical simulation, must be modelled (at 
the level of second-order closure) or dealt with by adding to the set of equations an 
approximate budget equation for the triple correlation <w'w'pv'>, (third-order closure). As 
earlier noted, this transport term arises due to transport of w'pv ' by the fluctuating 
(turbulent) flow w'. The concept of turbulent transport of a product of fluctuations (i.e. w' x 
w'pv') is not easy to visualize. The author's understanding of the physical meaning of this 
term is as follows: Not all the correlated fluctuations in pv ' and w' which are seen at level 
z are necessarily created at that level. Volumes of air within which correlated fluctuations 
(pv',w') have been created (by the production mechanisms) are apt to be bodily moved 
(transported) by occasional very large eddies (of size i » the volume under 
consideration) from the "marking" region (where the correlation was produced in response 
to a vapour-concentration gradient) to another location. For example, in the crown region 
of a canopy there is strong gradient production of correlation between w' and pv' (<w72> 
large, |3<j\>/3z | large); the large intermittent eddies bringdown volumes of air within 
which there is established correlation so_ that instruments in the lower canopy (where 
production is very weak due to small <w'2> and I 3 < j \ >3z I ) will measure correlation 
which was not locally-produced, i.e. the flux seen deep in the canopy may have essentially 
been created elsewhere. 
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By simplifying the budget equation for turbulent transport of scalar flux, various 
authors have suggested models for the turbulent transport of scalar flux (see Launder, 
1978). The majority of these include terms having the form of down-gradient transport (of 
scalar flux) driven by the mean gradient (in scalar flux). For the transport term in our 
(specialized) vapour-flux budget equation a typical model is 

<w'w'pv'> = -c<w'2> ts
 Kv -az <53> 

where c<w/2>xt is dimensionally and effectively an eddy diffusion coefficient. 

One of the nice features of the gradient-diffusion parameterization of turbulent 
transport is that we end up with a "diffusion term" 32<w'pv '> / 3z2 in the budget equation. 
Such terms have a smoothing effect and tend to ensure the numerical stability of a 
simulation. However, such a simple model may be criticized on at least two counts 

(i) turbulent transport, according to the simple model (53) is non-existent in the 
constant flux region above the canopy. Experimental measurements above 
model and real canopies have indicated that turbulent transport does not 
vanish immediately above the canopy.4 

(ii) It may be shown (Deardorff, 1978) that if one is to describe scalar diffusion 
from sources in homogeneous turbulence rigorously using higher-order 
closure, any effective diffusion coefficient appearing at higher-order must 
retain a dependence on time since release (or source proximity). 

It is instructive to examine under what assumptions the rigorous flux-budget 
equation will reduce to K-theory. In the case of (51), if we 

(i) neglect turbulent transport 

(ii) neglect buoyant production 

(iii) adopt the simple flux-killer model for pressure destruction 

then we have 

0 = -<w 7 2 > -j^- - <w'pv '> /t t (54) 

which is in effect a flux-gradient relationship, 

<~w7^r> = - <w72> t, ^ S ^ (55) 

We therefore see once again how far from generality is first-order closure. We 
must make sweeping and generally unsatisfactory simplifications to the rigorous laws of 
turbulent diffusion in order to draw K-theory into being. Measurements of the various 
terms in a scalar flux budget equation in a canopy have been reported by Coppin et al. 
(1986). These and other observations have proven that turbulent transport terms are very 
significant deep in the canopy. 

Some of the models which have been proposed do allow turbulent transport above the canopy. 
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SECOND-ORDER CLOSURE MODELLING OF CANOPY WIND AND TURBULENCE 

Higher-order closure models of canopy wind and turbulence have been described by 
Wilson & Shaw (1977), Lewellen ef al. (1980), Meyers & Paw U (1986), and Wilson 
(1987). The agreement with observed wind profiles u(z) demonstrated has usually been 
good (see, for example, Fig. 3 for predicted and measured wind profiles in a com canopy) 
while the prediction of the turbulent velocity variances has been not quite so good but 
adequate in the present context. The reported simulations have dealt with a variety of 
fairly dense and uniform canopies. The simulations may be criticized in that the 
agreement with observation has been procured through an optimal specification of the 
drag coefficient cd by either direct inference (from measured velocity and shear stress 
profiles) or by trial and error. Overlooking this criticism, it seems fair to say that higher-
order closure models can predict wind and turbulence in a dense canopy with an accuracy 
that should be more than adequate for the purposes of modelling canopy 
évapotranspiration. 

MODELLING CANOPY EVAPOTRANSPIRATION USING HIGHER-ORDER CLOSURE 

Simulations of the canopy environment using higher-order closure have been reported by 
Hwang & Shaw (1985), Paw U et al. (1985), and Meyers & Paw U (1987). Attention is 
restricted to dense, uniform canopies of large extent on level terrain with uniform soil and 
soil moisture conditions, in order to minimize the importance of horizontal transport and 
dispersive vertical fluxes. 

The model of Meyers & Paw U illustrates the general pattern one would expect of 
a higher-order closure model of the canopy environment. A canopy radiation model was 
used to compute the radiant energy supply for each canopy layer. This energy supply 
was then partitioned into contributions to the airstream sensible and latent heat using a 
single-leaf energy balance formulation. The energy balance at the soil surface was 
evaluated to calculate the heat and vapour fluxes from the ground. A set of 22 equations 
in 22 unknowns were solved at 40 grid-points lying below z = 2H. This required only about 
3 min on a microcomputer to yield rather good predictions of the évapotranspiration from a 
soybean canopy. The experimental data-set included measured above-canopy values of 
global incoming shortwave radiation K4-, net radiation Q*, wind speed, temperature, and 
specific humidity, as well as the canopy leaf area density profile, the soil heat flux, and 
measured stomatal resistance values. If additional sub-models were added for the 
stomatal resistance, for soil heat and moisture transport, and for the estimation of the net 
radiation, the required input would be reduced to the above-canopy values of K i , <u>, 
<e>, <T> and a knowledge of the leaf area profile. It is noteworthy that in spite of the 
added complexity of a higher-order closure model for canopy évapotranspiration (relative 
to, say, the big leaf combination equation) the inputs required to operate in a diagnostic 
sense (i.e. to estimate actual évapotranspiration from related measurements) do not 
exceed the inputs required by much simpler models of actual canopy évapotranspiration. 
By extension of the computational domain to the top of the PBL it is in principle possible to 
further reduce the "local" (i.e. immediately above-canopy) input. 
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CONCLUSION 

It should be clear that a comprehensive and well-founded évapotranspiration model must 
of necessity include a model of turbulent transport within the canopy in order to estimate 
the microclimate of the airstream into which the leaves are transpiring. K-theory or "first-
order closure" does not provide a suitable model for this purpose, and we have briefly 
examined the alternative of higher-order closure. Although there are theoretical difficulties 
with the higher-order closure approach, there is reason to be optimistic that a higher-order 
model, in conjunction with models of other aspects of the canopy energy balance 
(radiation, soil and plant status), will be both a conceptual and a practical improvement 
over the more superficial models in use at present. 
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