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Abstract. Among well-mixed multi-dimensional Lagrangian stochastic (LS) dispersion models, we
observe that those in poorest agreement with observations produce ‘spiralling trajectories, with
an associated reduction in dispersion. We therefore investigate statistics of increments &9’ to the
orientation ' = arctan(W'/U’) of the Lagrangian velocity-fluctuation vector — as a possible means
to distinguish the better L Smodel swithinthewell-mixed class.  Zero-spin’ models, having(dé’) = 0,
are found to provide best agreement with observations. It is not clear however, whether imposition of
the zero-spin property selects (in conjunction with the well-mixed condition) a unique model.
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1. Introduction

The most important remaining problem for Lagrangian stochastic (LS) models of
the paths of passive particles in turbulence, is to provide a criterion, further to
Thomson's (1987) well-mixed condition (w.m.c.), that selects the uniquely correct
model from the well-mixed class (Wilson and Sawford, 1996). Multi-dimensional
LS models of first order are necessarily (Thomson, 1987; Gillespie, 1996) of the
form*

dU; = a;(Us, Xi, t) dt + by (Us, X, t) d€;, @)

where dU is the velocity increment over time increment dt, a (the conditional
mean accel eration) and b are coefficientsto be determined (and whose specification
depends on the nature of the turbulence), and the d¢; provide Gaussian random
forcing. Thomson provided rational constraints on the specification of a, b, but in
the multi-dimensional case hisw.m.c. constrainsa only to within an unknown vector
¢, whose divergence in velocity space is (however) known. For example, for a
two-dimensional (2-D) model defining trajectoriesin steady-state and horizontally-
homogeneous turbulence,
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* U; denotes the total Lagrangian velocity. In this paper we follow meteorological convention:
U will be the z-(‘alongwind’) component, and W the ‘vertical’ (z) component. In the smplest
atmospheric flows, turbulence statistics are invariant in the horizontal plane, but vary with z.
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where g, is the Eulerian joint velocity probability density function (p.d.f.). It has
been shown (Sawford and Guest, 1988) and we show here, that different models
within the well-mixed class can give substantially differing rates of dispersion.
As the LS model arguably provides the best treatment of dispersion to hand, the
non-uniqueness problem needs to be solved.

It is an interesting observation that, among a class of well-mixed models, some
have the propensity to produce ‘spiralling trajectories’, with an associated sup-
pression of the rate of dispersion. Corresponding to this deficiency, such models
producetrajectories exhibiting a L agrangian autocorrel ation function characterised
by ashorter timescale than isimplied by the ‘input’ or ‘design’ timescale

_ 20%(2)
= Cotlz)’ ©)

1y,

that is implicit in the usual specification of the model coefficients b;; (in Equa-
tion (3), o2 is the turbulent velocity variance, € is the turbulent kinetic energy
dissipation rate, and Cp is a universal dimensionless constant). This observation
spawned an investigation by Borgaset al. (1997; BFS) of dispersionin (minimally)
non-isotropic homogeneousturbulence, wherein statistical propertiesweretaken to
involve a special direction (£2), with respect to which the turbulence was axisym-
metric. BFS gave anon-unigue, well-mixed LS model for this flow, and derived the
implied Lagrangian velocity covariance function (U;(¢)U;(0)) and the pattern of
dispersion (X;(t)X;(t)). Dispersion in directions normal to the axis of symmetry
was suppressed, due to the tendency of trajectories to spiral around that axis. BFS
related their asymmetry vector §2 to the mean angular momentum of a particle,

(LY = (X x U). (4)

The present paper stemsfrom our feeling that amoredirect criterion of trajectory
curvatureisneeded. (L) isnot alocal property of the trajectory, becauseit involves
reference to a coordinate origin. Since an LS model by definition provides the
Lagrangian velocity (or velocity-fluctuation) vector, it isstraightforward to examine
statistics of changes in the orientation of that vector, as implied by alternative
models.

2. Statistics of Trajectory Curvature

Thewell-mixed condition selects aunique model for motionin asingle dimension,
but not so for two- and three-dimensional motion. Our discussion will be focused
on 2-D trajectory models, but carries over easily to three dimensions. To avoid
irrelevant complexity we consider stationary, horizontally-uniform turbulence.

In the atmospheric boundary layer, trajectories exhibit curvature due to the
vertical wind shear 0a/0z. Wequantify that curvaturein Appendix A, but asregards
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construction of proper LS modelsintwo (or more) dimensions, it isfruitful to focus
not on that process, but on the rotation entailed by the fluctuations, (U’, W'). And
athough in what follows we give statistics of the changein trajectory orientation,
the mean rate of change (turning-rate) of the velocity vector isimplied, and is (in
principle) a measurable Lagrangian property.

2.1. LAGRANGIAN STOCHASTIC MODEL FOR VELOCITY FLUCTUATIONS
While it ismore usual to formulate LS models for thetotal Lagrangian velocity, it
is convenient for our purposes to split the velocity increment over time interval dt,
writing

dU; = da; + dU}, (5)

where the increment in the mean velocity over dt isjust

_ _ ou;
da; = (uj + UJ’-) dt oz, (6)
Accordingly we adopt the generalised Langevin equation

wheretherandom forcing d¢; is drawn from a Gaussian distribution with vanishing
mean and variance dt. Consistency of this model with Kolmogorov's similarity
theory of locally-isotropic turbulence requires (Thomson, 1987) that b;; = 0;;b
where b = (Coe)Y/2. In what follows, the meaning of a will be as according
to Equation (7) — and ¢ will represent the corresponding partially-constrained
component of a. In the Fokker—Plank equation that defines ¢, the velocity pdf g,
is the pdf for velocity fluctuation.

2.2. DEFINITION OF ROTATION ANGLES

The orientation of the Lagrangian vel ocity-fluctuation vector is
WI
o' = arctanﬁ, (8)

whileits rotation A#' over afinite (realisable) model timestep At is

9)

AY' — arctan ( UAW' —W'AU’ )

U/2 + W/2 + U AU’ + WIAW!

However the finite difference is not very tractable, and so we instead analyse
statistics of the differential. Now ¢’ = 6'(U’, W'), but because the velocities are
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stochastic, the differential df’ is to be obtained not by the ordinary chain rule of
Calculus, but by application of Ito’sformula® (see Gardiner, 1983; or for application
in the context of LS models, Thomson, 1987). Accordingly

- (o, 0 B 0% s AW
~ \"ou Tow T 20u” T 2 own
o6’ 06’
b+ Sib s, (10)

and carrying out the differentiations we obtain:

, Ullaydt +bdé,) — W'(a, dt +bdg,) (b2 — ) U'W'dt
dg" = U/2 + sz (UIZ + W’2)2 (11)
The second term on the rhs stems from the Ito correction, and obviously vanish-
es, but only because we have adhered to Kolmogorov similarity, i.e., scaled the
random forcing equally in the two stochastic equations. As we consider station-
ary, horizontally-homogeneous turbulence, we henceforth drop the prime on W,
assuming w = 0.

We may decompose df’ into deterministic and random parts, df’ = do!, + df,..
The deterministic part is

Ua, — Way,

oy = (6" U, W, 2) = —

dt, (12)

and is the expected rotation, given the particle’s preceding values of velocity and
position. The *fluctuating rotation’ is

U’ dgw -W dgu

A = b2

(13)

Thelatter is*model-independent’ (no dependence on the ¢ vector), with vanishing
mean value since (d¢;) = 0, and has variance

b2 dt
2

(the variance of d¢’ about the mean value d¢/, for prescribed U’, W). Given that
we shall later suggest a new selection constraint (for well-mixed LS models) that
specifiesonly the mean rotation angle, it is reassuring that the * fluctuating rotation’
is model-independent.

* We are indebted to an anonymous reviewer for correcting us on thisimportant point.
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Unconditional statistics of df’ are obtained by taking the probability-averaged
integrals over U’ — W space. For example, the expected value for d¢’, given that
particle position Z = z, is:

(d0'; 2) = / / (6", U, W, 2) ga(U", W, 2) dU AW (15)
and in view of Equation (12),

o0 !/
(d6"; 2) = dit / / U&‘g+£§“ ga(U', W, 2) dU" dW. (16)

The well-mixed condition gives for the a;:

¢u b? alnga ¢u b? 1 890,

“ w200 g 2g.0U" -

a:¢_w+b_8|nga_¢w v 1 9ga

b Ya 2 oW 9a 2 go OW
Substituting into Equation (16) we have:

© Uy —W¢
(s 2) = dt/ | g aaw
b2 dt U’ 09a W 0g, ,
— . (1
/ / <U’2+W28W U’2+W28U’> duTdw. (18)

Equation (18) provides the basis upon which we may diagnose mean trajectory
rotation (d6’; z), asimplied by various Lagrangian stochastic models, for various
types of turbulence. For simplicity we shall call LS models for which (d¢’) = 0,
that is, modelsin which thereis no preferred direction of rotation of the velocity-
fluctuation vector, ‘zero-spin’ models — admitting that thisis a misuse of the term
‘spin’. In Section (3) we shall examine well-mixed 2-D modelsfor the wind-tunnel
dispersion data of Legg et a. (1986), showing that those doing the best job of
calculating spread are zero-spin models.

3. Trajectory Curvaturein Multi-Dimensional Gaussian Turbulence

By definition, in two-dimensional Gaussian turbulence the Eulerian velocity fluc-
tuation pdf is

/ —
galulw) = 5 exp ; (19

u’zaz + w? os 2 4 w'wu?
o bl
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where 02 = 0202 — u?, u?2 = —(u'w). It is of significance to the integrations
which will follow that g, is either (when u, = Q) perfectly even (symmetric) on
thew’, w axes, or at least (u, # 0) hasopposite quadrant symmetry inu' — w space.

3.1. AXI-SYMMETRIC, HOMOGENEOUS, GAUSSIAN TURBULENCE

Borgaset al. (1997) considered dispersionin 3-D Gaussianturbulence, for whichthe
turbulence was assumed to be minimally anisotropic, the departure from isotropy
owing to the existence of a‘special direction’, £2, here taken to be aligned along
they axis, £2 = (0, €2, 0). They introduced a particular (but not unique) well-mixed
model,

Ui Ui
a; = —Tl+fz’ijjUk = —%+(Q><Q)i, (20)
wherein the additional component of the conditional mean acceleration acts per-
pendicular to the plane containing 2 and U;. With Q; = (0, €2, 0) the conditional
mean accel eration reducesto,

U Vv 14
au:—T—L—i—QW, aU:—T—L, aw:—T—L—QU. (21)
Now supposewe |ook at projections of the motion onto the z — z and y — z planes,
and define

w Vv
6 = arctan — = arctan —. 22
5 B U (22)

It is easy to show that:

Uay — Way 4 —

de; U, Vv, =
(d0; U, V. W) = =2

—Qdt, (23)
whence it follows at once upon averaging in velocity space that there is non-zero
spin, (df) = —Q dt. Similarly,

Uay, — Vay 4 — —Odt VW

48U, V, W) = = — ¥ du AL
</6 ) U2+V2 U2+V2

(24)
Sincethisisoddin V' (and W) it vanishesupon averaging over V' (or W): (dg) = 0.
This provides a perspective on the novel aspect of the Borgas et al. model for
axisymmetric turbulence: the chosen ¢ results in mean curvature of trajectories,
which manifests as spiralling about the axis defined by the specia direction £2.
If we reduce to the fully isotropic case (¢ = 0), we have (df) = (dg) = 0, and
more-rapid dispersion results.
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3.2. GAUSSIAN INHOMOGENEOUS TURBULENCE

Weretainthe earlier-given (genera) formsfor a,,, a,, (whichinvolvetheonly partly
constrai ned non-uniquenessvector with components¢,,, ¢.,), but adopt specifically
the Gaussian pdf g, (U’, W) for substitution into Equation (18). It can be shown by
atedious but straightforward integration that any well-mixed model (for U’, W)
in Gaussian turbulence, provided it is consistent with the Kolmogorov similarity
theory, has:

!
(d6'; 2) = di / / U(f;g W g a. (25)

To obtain this result it is helpful to transform to polar coordinates s = (U'? +
W?2)Y/2, arctan(W/U"), and to bear in mind the symmetry of g,, namely g,(—U",
—W) =g,(U', W). Inview of thissymmetry, any termin (U’ ¢, — Wy,)/ g, that
involvesafactor (U")™W™ with (m + n) odd will make no contribution to (d¢’; z)
through the integral in Equation (25).

Now, several well-mixed models (varying in their specification of ¢) have been
proposed for multi-dimensional Gaussian turbulence.

3.2.1. Thomson's(1987) Model for Gaussian Turbulence
Thomson’s model for the total velocity (U, W) corresponds (to first order in dt) to
the following model* for the velocity fluctuation (U', W):

Pu 1 0u? 1

Jda 20z
o2 ou? o2 ou?
1 2 u 2% %% 2 2%%u 27 %%
X (UW <aw -l 8z> +W (“*—az %, )) , (26

[ 1002 n i
Jda T 20z @ 202

80' 2 8U>,2( 2 2 80'5) 2 8'[1/5
<U w ( o v, > + W <ou 5 g, . (27
Multiplying by the velocities, substituting into Equation (25), and integrating, it
follows that (d¢’; z) = O (thisis because in each term of the integrand (U)W "

appearswith m + n odd). Thomson’swell-mixed multi-dimensional LS model for
Gaussian turbulence isa‘zero-spin’ model.

3.2.2. Borgas Model for Gaussian Turbulence
Rodean (1996) has provided a derivation of the following well-mixed model for
Gaussian turbulence — here simplified to the steady-state, horizontally-homogen-

* Obtained by subtracting the term W 04/0z from Thomson’s a.,, which follows from the fact
over theinterval dt, du = (W dt)0u/0z.
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eous case; this model was first given by Sawford and Guest (1988), and attributed
to M. Borgas. The ¢ vector in 2-D is:

Oy, ou?  w?do?® wlou, 5., >
Pu _ _ Ue 007 W 0% 20 2y
Ja 0z * 02 0z 020z (U +u. W)

ou w2 (002 o2 00 2
(o )

o 0z 02 0z
u? (002 0200 2
+202 ( azu B a_g—z> w5 (28)

g_a 0z 202 Oz + 02 0z

02 (u2d0% ou?\
AT

o2 (002 o2 00? 2

Tw u _ 9u99 _ 2
+20 ( 0z 02 Oz W (29)

Multiplying by the appropriate velocities for evaluation of Equation (25), we
obtain a non-vanishing contribution to (d#’; z). The Borgas well-mixed model
for Gaussian turbulence is not a zero-spin model. Aswe shall show, this correlates
with its giving generally the poorest agreement (among LS models we studied)
with observed rates of dispersion.

3.2.3. Flesch and Wison Model

In the more general context of non-Gaussian turbulence, Flesch and Wilson (1992)
introduced a well-mixed model designed to have the property that ¢ should act
so as not to change the orientation of the velocity-fluctuation vector (this model
has been generalised to three dimensions by Monti and Leuzzi, 1996). Since the
Flesch-Wilson model has

U,¢w —Wo, =0, (30)

it follows immediately from Equation (25) that it is a zero-spin model, in the case
of Gaussian turbulence. But Flesch and Wilson noted the possibility (however
improbable) of very large accelerations occurring according to this model. While
that may not in practise be important, it remains a troublesome point.
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3.3. COMPARISON OF WELL-MIXED GAUSSIAN MODELS WITH DISERSION
EXPERIMENTS

We have applied two-dimensional Thomson, Borgas, and Flesch—Wilson L Smodels
to simulatedispersionin and aboveamodel plant canopy, in wind tunnel flow (L egg
et a., 1986; hereafter LRC). We have elsewhere (Flesch and Wilson, 1992) given
our choice of flow statistics, derived from the data provided by the authors. We
must point out that velocity statistics of this flow are highly non-Gaussian, and
that it is therefore inappropriate to apply LS models intended for Gaussian flows.
However Flesch and Wilson have already shown that Gaussian models provide, in
fact, a very good simulation of the experiments. The Flesch—-Wilson model here
assumes Gaussian velocity statistics, like the other models.

Figure 1 compares the observed rate of spread, from a line source in the flow,
with the predictions of each of the LS models. Also shown are the unique 1-D
LS model for Gaussian turbulence, which incidentally is in poor agreement with
the observations near the source; and another model, described in the next section.
Figure 1indicatesthat available 2-D well-mixed modelsdiffer in their prediction of
the rate of dispersion in the LRC flow, and that the zero-spin models both provide
excellent agreement with the observations, whereas the Borgas model, not a zero-
spin model, underestimates the rate of spread. This is similar to what has been
found in the case of homogeneousturbulence: spiralling of trajectories reducesthe
rate of dispersion. Figure 2 shows that the ¢ fields of the Thomson and the Borgas
models are very different for the LRC flow. This brings usto the question, is there
aconstraint on ¢, in addition to the w.m.c., that ensures a zero-spin model?

4. Tailoring ¢ to Minimize Trajectory L ooping

Many atmospheric flows involve ‘organised’ rotation — tornados, building wakes,
the convective boundary-layer, etc. Presumably however, that rotation would enter
LS models through the mean velocity field. It is not obvious that one would ever
wish to ‘design in’ a ‘biased’ rotation of the Lagrangian velocity — fluctuation
vector — although possibly criteria with respect to (e.g.) (d@'?), the variance of the
fluctuating rotation, might prove useful (at present we have no observations of that
statistic). Then supposing onewishedtotailor ¢ to obtain azero-spin model, how to
proceed? In general, Equation (18) provides an implicit specification constraining
¢ to ensure spinless vel ocity-deviation.* But we have been unable to extract from
it an explicit (and therefore usable) condition.

* Recall that in LS models for the total Lagrangian velocity, ¢ isto be augmented by the amount

_ .\ 0uy
U — uj)@Tjga-
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Figure 1. Lagrangian stochastic simulations of dispersion of heat from an elevated line source within
amodel plant canopy in awind tunnel, in comparison with observations (@) by Legg et a. (1986).
The length scale h is canopy height. The temperature scale T = Q/(pcphsUs), where @ is the
source strength [W m™1], h is the source height, and Uy is the mean windspeed at source height.
Error bars give the standard error of the mean resulting from a set of independent simulations with
each model. Legend identifiesthese models: 1-D, The unique well-mixed LS model for 1-D Gaussian
turbulence; DT, Thomson model for multi-dimensional Gaussian turbulence; MB, Borgas model
for multi-dimensional Gaussian turbulence; FW, Flesch-Wilson model; IR-2, Well-mixed model for
Gaussian turbulence based on irrotationa ¢/ ga.
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Figure2. The¢/g. fieldsof the Thomson (DT) and Borgas (MB) well-mixed L Smodelsfor Gaussian
turbulence, evaluated at height z/h = 0.85 in the wind-tunnel flow of Legg et al. (1986).
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On the other hand we note that an arbitrary non-divergent but rotational vector
¢s/g. (i.e. having zero divergence but non-zero curl; such a vector is called
‘solenoidal’) can be added to ¢/ g, without atering the value of V - (¢p/g,), which
is constrained by the wmc. Accordingly we hypothesize (but have not proven) that
LS modelshaving ¢/ g, irrotational, will be‘ zero-spin’ models. But eveniif thisis
true, therelationship is generally not reciprocal: for although (as shown earlier) the
Thomson multi-dimensional Gaussian model is a zero-spin model, the solenoidal
component of its ¢ field is non-zero. In the case of steady-state, two-dimensional,
horizontally-uniform, Gaussian turbulence, even were the shear stress to vanish,
Thomson's specification for ¢/ g, has non-vanishing curl:

! 2
ngzgaln%‘

g 2 0z 3D

4.1. NUMERICAL DETERMINATION OF AN IRROTATIONAL ¢/ga FIELD

We invoke the Helmholtz decomposition theorem,* and determine an (irrotational)

¢ as

¢ O

e~ o (32)
Application of thew.m.c. resultsin an equation

821/) . 1 (0g, 0 ’ Y 994

o2 g ( ot " 9w 9" B gur ) (39)

for the scalar field ¢ (g, isthe pdf for the velocity fluctuation). We solved Equation
(33) numerically, to obtain the field of ¢/g, a each of 300 levels on the range
0 < z < 6h (h thecanopy height) for the LRC flow. Theintegration was performed
on arectangular domain:

—100, < U — u < 100,
—100, < W < 100y’ (34)
with resolution 0.20,, 0.20,,, specifying that the normal gradientn - V) of « at the
boundaries (n being aunit vector normal to the boundary) should vanish.** During
the subsequent LS simulations, ¢ was determined at any location (U', W, Z) by
interpolation from the grid.

A simulation of the LRC dispersion experiment using this irrotational ¢/g,
model isshownon Figure 1. Thereisno (statistically) significant difference between

* With some reservation as to its applicability, for the theorem is predicated on some conditions.
** It is not clear which are the correct boundary conditions. However we found that except very
close to the boundaries, the solution is not very sensitive to the choice made.
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thissimulation and those of the zero-spin models* (Thomson, Flesch-Wilson), and,
al three provide quite good agreement with the measurements—whereasthe Borgas
model doesnot. It ischaracteristic of the non-zero-spin Borgasmodel, that particles
move on counter-clockwise looping trajectories.

5. Conclusion

Well-mixed L Smodelsfor whichthereisapreferred direction of rotation ((d’; z) #
0) of the Lagrangian velocity-fluctuation vector give rise to looping trajectories,
and a reduced rate of dispersion. In a particular case we examined (dispersion in
amodel plant canopy within awind tunnel), zero-spin models provided good (and
generally indistinguishable) agreement with observations. Thus we suggest that a
supplementary specification (beyond enforcing consistency with g, by imposing
the wmc) to reduce membership of the class of well-mixed multi-dimensional LS
models, is the requirement that (dd’; z) = 0. However as far as we can tell, this
does not select a unique well-mixed, zero-spin model. Nor are we able to provide
an explicit recipe for ¢ that resultsin the zero-spin property, though it is plausible
that the requirement ¢ /g, beirrotational might suffice.

Finally, an unambiguousdefinition of ‘looping’ of particletrajectoriesisneeded.
Let P(x2,t2 | x1,t1) bethe transition probability density, from position x; at time
t1 to the region of x, at later time ¢,. Then P(x,t | x,to) is the probability
density for areturn at time ¢ > ¢o to alocation earlier occupied, and quantifiesthe
probability density for ‘looping’ relative to fixed coordinates. The requirement that

8P(.’L‘i, t | TLi, to)
ot

seems one possible mathematical prescription for ‘no-looping’ (again, relative to
fixed coordinates). Now, P(x,t | x,%o) isjust the concentration at (x,¢) due to
the release of unit mass at x at time ¢ = tp. It follows immediately from the mass
conservation equation that condition (35) requires

<0 Vit Va, (35)

OF;
0x;

>0 Vit (36)

where F; isthe mean flux density subsequent to aunit release at (x, tg). Thisseems
asensibleresult, requiring that the spatial field of the mean vector massflux density
which resultsfrom the release of unit massat the point x should be such asto never
increase the concentration at Xx. Unfortunately, Equation (36) raises no explicit
constraint on the coefficients of the LS model. But in any case, it is probably more
relevant to prohibit trajectory ‘looping’ as seen in adrifting frame of reference. In
the highly restrictive case of aflow having a constant and spatially-uniform mean

* The ¢/ g, fields for the other models are analytical, so need not be obtained numerically.
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velocity field (U), the probability density for ‘looping’ in a coordinate frame that
moves with the mean flow is P(x + U(t — to), ¢ | x,%o): it seems unlikely that
an explicit constraint on model coefficients would ensue from constraining this
density function.
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Appendix A: Trajectory Curvaturein 1-D Turbulence

In the case of atmospheric turbulence, fluctuations ' in horizontal windspeed are
much smaller than the mean wind z = u(z), except very close to the ground. It is
therefore common to construct one-dimensional LS models of atmospheric disper-
sionin the z—z plane, modelsthat ascribeto the particle the velocity vector (@, W),
i.e., exclude the alongwind fluctuation. We shall consider the trgjectory rotation
that arises in such treatments. The change dU in (total) Lagrangian alongstream
velocity over dt isjust

dUu = dZ@ = Wdta—u, (37)
0z 0z

while the (stochastic) increment in vertical velocity is
dW = a, (W, Z) dt + bd¢,,. (38)
Then the conditional mean rotation of the (u, W) vector is easily shown to be

_ ou
uay(W, Z) — Wzg " b2a dtW

. Z —
(d6: W, 2) u? + W?2 (a2 +W?2)2’

(39)

where the second term on the rhs stems from the Ito correction.
For example we may consider Gaussian 1-D turbulence, for which the Eulerian
vertical velocity pdf is:

1 w?
Ja(w,z) = me’(p (—m> . (40)
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The implied (and unique) well-mixed 1-D model is (Thomson, 1987)

W 1002 w2

w

where we note that the drift correction part of thisiseven (symmetric) in 1W. Then,

2 2 —
o (—TZI(/Z) + %%ﬁ” <1+ %)) — Wz%
(d0; W, 2) = - a
%. 42)
Now,
(d6; 2) = [ O:O(dH;W,z> Ga(W, 2) dWY. (43)

Since g, isevenin W and (d@; W, Z) is a sum of even and odd contributions, the
integral decomposes into the integrals of even and odd functions of W: only the
even part is non-zero, and it follows that:

(do;z) B . ( |l )
” = A(z) —exp 202 erfc NG
] VTG dof,
A - — 44
Xlﬁ Va5, 22y Jil 0 | @9
where
ou u 002

In the neutrally-stratified and horizontally-homogeneous atmospheric surface layer
(NSL), the verical profile of the meanwind is

Uy z
() = - In (ZO> , (46)
where k, (=0.4) is von Karman's constant, «.. is the friction velocity and zq isthe
surface roughness length. Thusfor the NSL, A = —u, /(k,2).

Random flight simulations (for the NSL, and for linearly-sheared Gaussian
homogeneous turbulence) have confirmed Equations (44, 45). Not surprisingly,
according to our analysis, and believably in reality, trajectories preferentially curve
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(clockwise) in the mean shear. An interesting case would be the region at the top
of acrop canopy: where there are large positive values of both 0,4 and 0,0,.
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