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ABSTRACT

Lagrangian stochastic (LS) dispersion models often use trajectory reflection to limit the domain accessible
to a particle. It is shown how the well-mixed condition ( Thomson ) can be expressed in the Chapman-Kolmogorov
equation for a discrete-time LS model to provide a test for the validity of a reflection algorithm. By that means
it is shown that the usual algorithm (perfect reflection) is exactly consistent with the wmc when used to bound
Gaussian homogeneous turbulence, but that no reflection scheme can satisfy the wmc when applied at a location
where the probability distribution for the normal velocity is asymmetric, or locally inhomogeneous. Thus, there
is no well-mixed reflection scheme for inhomogeneous or skew turbulence.

1. Introduction

In numerical random-flight calculations, which
mimic turbulent dispersion, one must often limit the
domain accessible to the particles. This may be because
a true flow boundary exists (e.g., the ground), or be-
cause we consider it unnecessary to calculate parts of
the trajectory (e.g., within a forest), or simply because
we are considering an artificial system (e.g., bounded
homogeneous turbulence). Accordingly, there arise
diverse specifications of velocity statistics near com-
putational boundaries, and a boundary may or may
not be crossable. If crossable, then we need to supple-
ment the LS model with a reflection scheme—and this
is a practice that has escaped anything but cursory in-
vestigation, despite the fact (which we will demonstrate
here) that a bad reflection scheme tacked onto an oth-
erwise “good” LS model may result in failure of an
initially well mixed distribution of particles to remain
well mixed, that is, violation of Thomson’s (1987)
“well-mixed constraint.”

In this paper we are concerned with correct methods
of restricting the particle domain. Our criterion will be
that however this is achieved, the well-mixed constraint
{wmc) must obtain. Failure of a trajectory model to
satisfy the wmc implies a spurious growth of statistical
order from disorder, and can lead to bad predictions
of, for example, ground-level concentration from pol-
lutant sources.

In order to bring the boundary treatment within the
scope of the wmc, we impose the latter on the complete
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model algorithm (i.e., including reflection, if used),
and in a discrete-time framework. This is achieved by
enforcing the wmce in the Chapman-Kolmogorov
equation, rather than (as did Thomson) in the (time
continuous) Fokker-Planck equation derived there-
from. A complete specification of a discrete-time LS
model, in our view, includes any reflection algorithm
employed, and implies a transition density function
that accounts for a// motions of the particle, including
reflection. The discrete-time probabilistic description
is true to the underlying random-flight (RF) model:
the only aspect that cannot be simulated (by repeatedly
integrating the Chapman-Kolmogorov equation), is
the use of a time step At that varies along the trajectory,
in response to the flow statistics encountered. But there
is a penalty to the rigor of the discrete-time framework.
Whereas the continuous-time description permits the
derivation of a suitable model from the wmc, we are
forced instead to postulate a model, then check (usually
numerically ) for satisfaction of the wmc.

We emphasize that it is not always possible to state
whether an observed violation of the wmc is attribut-
able to the means of boundary treatment, or to the
implementation of a model derived from Thomson’s
criteria (i.e., a model that is well-mixed in the limit of
an infinitesimal time step ) with a finite time step. Cri-
teria pertinent to the latter source of (discretization)
error are briefly reviewed in the Appendix.

2. The “ground”

In engineering flows it is possible to imagine a flow
boundary (say at z = 0) so smooth that one might have
knowledge of velocity statistics arbitrarily close to z
= 0. However, in the atmosphere this is almost never
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true. In atmospheric theories, whether concerned with
the flow itself, or with motion of a tracer in the flow,
there is normally a layer adjacent to ground within
which the velocity statistics are unknown. A convenient
parameterization is substituted for reality. We will call
this the “unresolved basal layer” (UBL), and by way
of example note the practice (usual in treating surface-
layer dispersion ) of extrapolating to ground the Monin~
Obukhov surface-layer profiles, which in principle are
valid only where z > z,, z, (here) being the surface
roughness length.

We are forced to ignore the structure of the UBL,
and treat its statistics by extrapolation from the resolved
profiles above, because the UBL itself is, for some or
all of the following reasons, too complex to consider:
measurements in the UBL (e.g., among the blades of
grass, or between the clods, or at a different scale among
the houses) are difficult if not impossible; the assump-
tion of horizontal homogeneity is invalid [unless ap-
plied to suitably defined averages, ¢.g., Raupach and
Shaw (1982)]; very close to ground, temperature gra-
dients might be so large that conduction causes suffi-
ciently rapid volumetric dilatation to invalidate the
Boussinesq approximation [ for a criterion see Batch-
elor (1985)]; and, the effective Reynolds number may
not be infinite.

Sometimes the surface parameterization spans not
just this truly unknown layer, but substitutes for known
structure a simplification (we will still use the term
UBL in this case). Thus to someone modeling disper-
sion in the convective boundary layer, details of motion
within the forest may be irrelevant, and the entire forest
layer may be treated as the UBL, even though it is
feasible to specify velocity statistics within a canopy.
But to someone modeling pollen dispersion in the for-
est, the UBL is likely to be a shallow layer covering,
for example, the needle litter. Going further, one might
(by design, and in many contexts legitimately ) ignore
the real structure of the entire atmospheric surface layer
(ASL), replacing it with extrapolated mixed-layer pro-
files (e.g., Luhar and Britter 1989). -

Are there severe consequences of our inevitable ig-
norance of velocity statistics in the UBL? Fortunately, it
seems not. Let us focus on the horizontally uniform,
neutrally stratified atmospheric surface layer (NSL). Suf-
ficiently far from ground (z > z,), turbulence in the NSL
is characterized by a single velocity scale u,, the friction
velocity, and length scales z, 6. Vertical dispersion is nor-
mally simulated by assuming the Lagrangian decorrela-
tion time scale 7 oc z/ 0oy, and o,, = 1.3 u,. This neglects
the gradient of ¢, across the UBL (o, must vanish as
z — 0). Although the structure of the UBL is thus ig-
nored, and the surface layer wrongly extrapolated to
ground, simulations of this sort compare well with ob-
servations (e.g., Wilson et al. 1981).

Why? For example, by definition a ground-level
source is within the UBL. Yet experience has shown
that for any downstream distance likely to be of interest,
continuous ground-level sources (release height H
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nominally zero) of passive tracer may be treated as a
release “near” ground with reflection of trajectories (in
the context of Eulerian models, imposition of the no—
flux boundary condition) at some “small” height z
= zp. Complete neglect of the actual structure of the
UBL seems to be inconsequential, presumably for the
following reasons: (i) horizontal velocities within the
UBL are small, so trajectories enter and leave the UBL
at roughly the same (x, y) location; (ii) the UBL itself
is disturbed by surface irregularities causing what may
loosely be denoted turbulence, so that residence times
therein are not long; (iii) the tracer mass residing in
the UBL is usually small with respect to the total tracer
mass; and (iv) all points in the UBL are located close
to the ground, where the mean vertical flux vanishes;
therefore the mean vertical concentration gradient in
the UBL is small, resulting in an insensitivity of mean
concentration near the wall to the exact placement of
the model boundary.

The conclusion we reach is that the velocity statistics
specified at the ground will never be demonstrably the
“truth,” and there is no barrier to pragmatism in their
specification. A wide variety of surface boundary con-
ditions are used in practice [e.g., for the convective
boundary layer, compare Luhar and Britter (1989) with
Weil (1990)].

3. Implementing a nonattainable boundary

Asareal flow boundary (say at z = zz) is approached,
the probability density function g,(w) for the normal
velocity w along the z axis must collapse,

M zrzpy8a( 2, W) = 3(w, 0).

A real fluid element approaching the boundary is driven
by eddies of ever smaller characteristic length, velocity,
and time scales, and consequently is restricted to the
flow domain. Accordingly, one might hope to imple-
ment an uncrossable (or unattainable) boundary in a
trajectory model by specifying realistic profiles of the
velocity statistics (e.g., velocity variance vanishing at
the boundary) and a suitable time step (small com-
pared with flow time scales, the latter essentially van-
ishing at the wall).

Suppose we wish the ground (zz = 0) to be inac-
cessible to computational particles. This is guaranteed
on the condition that whatever the present height z of
a particle whose present velocity w is negative, the time
step for the forthcoming step (usually and most nat-
urally chosen as At = ur(z), where u < 1) obeys

At(z) < —,
fwl

which we can take to require

z
lw] <—.
uT

(1)

Since the magnitude of w decreases with decreasing
local velocity scale ¢,(z), and since Eq. (1) is more
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likely to be satisfied with decreasing , the natural way
(“natural” in the sense that one imposes no additional
constraint on the time step) to render the ground un-
attainable by model particles is to ensure that the tur-
bulent velocity and time scales decrease as the ground
is approached. Additional protection is available by
reducing u.

We found (section 9) that when the convective
boundary layer was parameterized with velocity and
time scales vanishing at boundaries, and provided the
ratio u = At/7 was small enough, boundaries were not
crossed (and so were “naturally unattainable™); but
great computational effort was involved to calculate
short trajectory segments near the boundaries, and an
alternative boundary treatment involving trajectory
reflection was much more efficient.

Artificial unattainability. Suppose one wished to im-
pose boundaries at z = ZB, ZT. For a particle stepping
on from state (zg, wy), one might add an (additional)
restriction on the time step

< 2T =0~ 2]

” . W0>O
0
—(ZB +
Als%ﬂ’ W0<0,
0

where ¢ > 0 is an arbitrary small length. The infallible
consequence of this strategy, we found, is violation of
the wmg, attributable unambiguously to this means of
bounding the domain.

4. Expressing the well-mixed constraint in the
Chapman-Kolmogorov equation

In this section we will show how the well-mixed con-
straint can be imposed on discrete~time step LS models
that may include a reflection algorithm.

The height z and velocity w of a single particle re-
leased into a turbulent flow may be represented as a
moving point in z-w phase space (the generalization
to multiple dimensions is obvious). The trajectory of
the point (z, w) for an individual realization is sto-
chastic, but by considering an ensemble of realizations
of such a single particle release, we may define a po-
sition-velocity probability density function (or state
function) p(z, w, t), whose evolution is deterministic.

Suppose the fluid density is p(z) and the Eulerian ve-
locity pdf is g.(z, w) (we will restrict our attention to
stationary flows). We may release the particles at random
into the flow in such a way that the ensemble mean prob-
ability of release at z is proportional to p(z) (particles
initially well mixed in position ), and if the initial velocity
is randomly chosen from the Eulerian pdf (release velocity
well mixed) then p(z, w, 0) oc o(2)g.(z, w). Thomson’s
well-mixed constraint states that a model for the calcu-
lation of trajectories should guarantee that passive tracer
particles initially well mixed in the flow (in the sense
defined above) must remain well mixed, with respect to
both position and velocity.
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Once released into the flow, a particle must thereafter
exist somewhere and with some velocity; thus a con-
servation law applies to p(z, w, t). Thomson showed
that the wmc requires g, to be a solution to the Fokker—
Planck equation, the differential equation that expresses
probability conservation for the chosen trajectory
model. Because we wish to impose the wmc for a prac-
ticable (i.e., time discrete) LS model, we will instead
work with an integral statement of probability conser-
vation, the Chapman-Kolmogorov equation (van
Kampen 1981; Gillespie 1992).

Consider the phase space z-w to have been divided
into elementary volumes d$; (j = 1, - - -, N). Then
it is obvious that the probability P(d<;, ;) that a par-
ticle lies in dQ; at time £, is

P(dQ;, ) = 2 T(d, |4, 1)P(dy, 1),

J

where t, > t; and T is the probability of transition in
the given interval from d; to dQ;. The specifics of the
trajectory model (and any reflection procedure ) define
T. The corresponding expression for the evolution of
the joint density function is the Chapman-Kolmogorov
(CK) equation:

(22, Wo, b)) = f (22, Wa, ta|zy, Wi, 1)
Q

X p(zy, wi, t)dzidw,, (2)

where () denotes the entire region of the z-w domain
that is accessible to a particle, and p(z,, w2, 62| z,, Wy,
t,) is the transition density [i.e., p(zz, wa, 2| 2y, Wy, 1)
dz,dw, is the probability of transition during interval
(&, — t;) from z;, w; into volume z, * 1»dz, and
velocity interval w, & 1dw,]. Again, the trajectory
model specifically defines the transition density, which
will often be stationary, that is, will depend on £, — ¢,
but not ¢, 0r £5.

Imposition of the wmc in the Chapman~Kolmo-
gorov equation is straightforward. Assuming the fluid
density to be constant, we simply require that for all
t, the transition density must satisfy

&z, w) = fﬂp(z, w, t| 2o, wo, 0)8a(20, wWo)dzodwo.

(3)

We can regard g, as known, so that this (novel ) expres-
sion of the wmc is an integral equation for the transition
density (in the terminology of integral equations, g, is
an eigenvector of the transition density with eigenvalue
1). Unfortunately, there is no unique solution for the
transition density [clearly p(z;, w,, tlzy, wi, t)
= 6(z,, z1)8(w,, wy) is a solution, though not a useful
one: we are not interested in a trajectory model that
leaves each particle in its initial state }. The well-mixed
condition alone cannot fully determine the trajectory
model. This is well known, and not surprising, since
there is no dynamical content to the wmc. The wmc
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is rather a statement with respect to entropy, its satis-
faction by a model prohibiting the spurious evolution
of order from disorder.

In what follows we will sometimes make use of the
fact that if a trajectory model is to fail the wmc, it must
do so on the first time increment. For by the stationarity
of the transition probability, provided p(z, w, At)
= g,(z, w) then p(z, w, t) = g.(z, w) for all ¢. Thus,
for stationary flows, one may impose the wmc by in-
voking Eq. (3) with the specialization ¢ = At.

5. Criteria for reflection algorithms

For multidimensional LS models of non-Gaussian
turbulence, the smooth-wall reflection scheme (see section
6) that has so far been employed without much scrutiny,
will in general fail. The most complex reflection algorithm
yet proposed seems to be that of Weil (1990), for tur-
bulence having a skewed velocity pdf. In this section we
consider whether there exist guidelines for the design or
testing of a reflection scheme that are more restrictive
than the “expanded” well-mixed criterion of the previous
section (wherein the reflection algorithm is implicit in
the transition density ). We note that reflection schemes,
no matter what their other merits, break the equivalence
between model and real time (measured from release of
the particle).

Any reflection scheme will be satisfactory in at least
one respect—the mass (or number) flux across the
boundary (we will for the present consider the vertical
flux across a horizontal boundary at z = 0) will vanish.
In terms of the state function, the vertical flux is (van
Dop et al. 1985)

o0

F(z,1) =f

w=—c0

wp(z, w, 1)dw = W(z,1)C(z, 1),

where C(z, t) is the mean concentration,

C(z, )= fw

W=—0c0

p(z, w, t)ydw,

and the mean Lagrangian velocity W (z, t) is defined
by the above equation. One of the aims of reflection
is to assure F,(0, t) = 0 [or equivalently W (0, t)
= 0], no matter what the preconditioning of p(z, w,
1), that is, no matter what the history of the particle
trajectory. But is that all that is necessary of a reflection
algorithm? Surely not. For if in our means of assuring
F,(0, t) = 0 we distort the velocity pdf in the region
of z = 0, we fail the wmc.
The vertical flux of air is

€

wga(z, wydw.

Fo(z, 1) = f
w=—co

In many flows of interest (e.g., the horizontally uniform

atmospheric surface layer) this will vanish. Clearly if

it does so (and it will at any plane where we would

wish to zero the flux of a passive tracer), then by def-

inition so does the vertical flux of any well mixed tracer.
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Thus, satisfaction of the wmc by a complete LS algo-
rithm guarantees vanishing vertical tracer flux at im-
permeable boundaries. Upholding the wmc seems to
be a complete criterion for a reflection algorithm.

6. The transition probability and the trajectory
model

We consider an LS model unambiguously defined
only if the procedure at flow boundaries is specified
and considered part of the model. In this section we
will demonstrate by a simple one-dimensional example
how to find the transition probability corresponding
to a complete LS model.

We will again consider vertical motion, in a system
bounded at z = B and z = T (T > B). Provided only
that (z, w) evolves as Markov process, a suitable general
model for the increments in velocity and position over
an infinitesmal time increment dr is

dw = a(z,w, t)dt + bd§, dz = wdt,

where the increments d¢ are independent and random,
and have the Gaussian distribution with mean 0 and
variance df (Thomson 1987). To obtain a practicable
model, we will employ the above equations with finite
increments At, etc., and add the specification At < 7,
where 7 is to be regarded as the shortest significant
time scale of the system. Our (arbitrary) practice is to
calculate Az prior to incrementing w, which leads to
a convenient factorization of the transition density into
a product of independent transition densities for ve-
locity and position (see below).

We must now face the possibility of a particle cross-
ing z = Bor z = T. Suppose a particle goes from an
allowed state (zg, wy, t) to a subsequent disallowed
state (z*, w*, t + At), where z* < Bor z* > T. Then
under “smooth-wall reflection” at the lower boundary
we correct the disallowed state z* < B at 1 + At by
placing the particle in the state (2B — z*, —w*, -
+ At), while in case of flight above the upper boundary
the corrected state is (27 — z*, —w*, ¢ + At). We may
incorporate these conditional reflection procedures into
the generalized Langevin equations by introducing
logical variables:

ol ) 0, wo> —(z0— B)/AL
Zn, Wi =
BRI, we < —(20 — B)/ AL,

C ( )_ 0, Wog(T_Zo)/AZ
820 WOl T 1 e > (T = 20)/ A,

and

Cpr(20, wo) = Cp U Cr-.

In terms of these logical variables, the LS model may
be expressed as
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Aw = a(zy, wo, t)AL(1 — 2Cp7)
- ZCBTW() + b(l - ZCBT)AS
Az = WQA[(I - 2CBT) - ZCBTZ() + ZCBB + ZCTT

This is a complete discrete-time LS model, in the sense
that it contains a reflection algorithm, and is unam-
biguous with respect to the order of operations.

The corresponding transition density p(z, w, ¢
+ At|zo, Wy, t) for a single time step At is composed
of independent transition densities for position and ve-
locity, p = p.p.. The transition density for position
may be written

p(z, 1 + At|zp, wo, t) = 8[z — 20, woAL(1 — 2Cpr)
- ZCBTZO + 2CBB + ZCTT],

meaning that given zy, wy, and Az, the new position z
can take on only three possible values (the delta func-
tion for p, accords with the absence of diffusion along
z in the Fokker-Planck equation corresponding to the
LS model). If reflection does not occur during Az, the
new position z(¢ + At) must be zy + wyAt, that is, p.(z,
t+ At|zp, wo, t) = 6(z — zp, woAt). On the other hand
if reflection does occur, the new position is 2B — z,
— wpAt (upward reflection at B), or 2T — zy — wpAt
(downward reflection at 7). We have assumed 7 — B
is sufficiently large to prohibit multiple reflections
within a single time step.

Since the random forcing in velocity bA£ is Gaussian,
the transition density for velocity is also Gaussian, with
variance b?At:

1

pulw, £+ At|zo, wo, 1) = ) b (A0

[w—wy — a(zo, w, 1)
X At(1 = 2Cpr) + 2Cprwo)?
2b%At '

The transition density for more complex cases
(multidimensional, etc.) may be constructed by the
same steps.

The evolution of the state function p(z, w, 1) ob-
tained by repeated integration of the CK equation

X exp{—
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must, except as regards truncation or stability error
caused by numerical integration, prove identical to the
ensemble-mean evolution as calculated by random
flights using the underlying model (provided the latter
uses position-invariant time step). It would be pedantic
to check this routinely, but an example of the expected
consistency will be given (section 8). In the following
sections we will test whether particular transition den-
sities chosen to model motion in several bounded tur-
bulence systems, including models of the lower at-
mosphere, satisfy the well-mixed condition.

7. Reflective boundaries for Gaussian turbulence

The well-mixed one-dimensional model for station-
ary Gaussian turbulence (i.e., turbulence in which the
Eulerian velocity pdfis Gaussian ) is (Thomson 1987):

w 1 9o w?
di+-—=|1+—\|dt
7(2) 2 9z ( aﬁ,)d

2\1/2
b= ()" @

T

dw = —

+ bd§,

where 7 is the decorrelation time scale. A discrete im-
plementation, with smooth-wall reflection at ground
and with appropriate choices for 7(z) and ¢,,(z), gives
good predictions of short-range dispersion in the at-
mospheric surface layer (e.g., Wilson et al. 1981)." But
is it exactly well mixed?

In the unbounded homogeneous case, it can easily
be shown that the finite-increment model satisfies the
wmc Eq. (3), provided that

2 2
2_9w| 4 _ _ A
o] (1 27).

If At < 7, this distinction regarding b is not important.

(3)

a. Bounded Gaussian homogeneous turbulence

Now suppose we use smooth-wall reflection at z
= 0 to model the artificial system of bounded homo-
geneous turbulence. If the initial state is p(z, w, 0)
= g,(w), then the entire LS algorithm is acceptable if,
after a single time step At < 7, the state p(z, w, At)is -
still the well-mixed state. The state at Az is

© —2zo/ At
plz, w, At) = f [f p(z, w, At]zy, wy, O)ga(wo)dwonzo

20=0 Wo=—00

]

f p(zs w, Atlzo, Wo, O)ga(Wo)dWO]dZO-
wo=—2z0/ Al

Writing the delta functions that occur in the transition
density (given earlier) as 6(z — zy, woAt?) = (1/At)é[ wo,
(z — z9)/ At)], etc., this is readily integrated to confirm
that provided b is given by Eq. (5), p(z, w, Af)
= g,(w). Our analysis (perhaps rather laboriously)
proves that smooth-wall reflection exactly satisfies the

wmc in Gaussian homogeneous turbulence. Random
flight simulations confirm this, However, if instead of

' That this model was a discrete version of Eq. (4) is shown by
Wilson et al. (1983).
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FIG. 1. Distortion of the wall-parallel (1) velocity pdf at z = 0.01
when smooth-wall reflection (with reversal of normal velocity only)
is applied at z = 0 in two-dimensional, Gaussian, homogeneous tur-
bulence. Velocity statistics oy = o = 1, 7 = 1, and velocity correlation
coefficient p = —0.3; pdf obtained by integrating the Chapman-Kol-
mogorov equation for a single time step At = 0.1 away from a well-
mixed initial state. Numerical integration used w € (=5, 5), Aw
= 0.05, Az = 0.01. The pdf distortion does not occur far from the
wall, nor if p = 0, nor if u (as well as w) is reversed on reflection.
The LS model is Thomson’s ( 1987) multidimensional well-mixed
model for Gaussian turbulence.

the smooth-wall reflection algorithm, “artificial unat-
tainability” of the boundaries (section 3) is imposed,
catastrophic violation of the wmc results.

What about other reflection algorithms? Suppose as
an alternative to the smooth-wall reflection scheme we
were to place any particle attaining z < 0 at z = 0.
Then, whatever our strategy for treating the velocity,
we must fail the well-mixed constraint: integration of
the CK equation shows that at time At after a well-
mixed release, the marginal pdf for position will have
the form p(z, At) = cé(z, 0) + f(z), where f(z) is
some unspecified function; that is, the position pdf
contains a weighted delta function. Another unac-
ceptable reflection scheme is to map the disallowed
position z < 0 to —z and break the velocity correlation
by adopting as the next velocity a random choice from
. the one-sided (positive only) Gaussian distribution
G*(w). In that case, integration of the CK equation
yields a marginal velocity pdf that contains a weighted
term in Gt (w).

The requirement that a reflection algorithm should
satisfy the well-mixed constraint has implications that,
on first sight, are surprising. Some two-dimensional
models that include velocity covariance will require
reversal upon reflection of both the normal velocity w
and the correlated along-wind velocity fluctuation u,
although no “real world” significance can be attached
to the need. For example, consider homogeneous tur-
bulence, bounded at z = 0, L, in which the turbulent
velocities u, w have covariance {uw) = po,0,. Thom-
son (1987) gave a well-mixed multidimensional model
for Gaussian turbulence that for the present case re-
duces to _ :
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dw = a,dt + b,d¢t,, du= a,dt+ b,di,,

and if we choose

then the conditional mean particle acceleration com-
ponents are

ay=——— | —put+ Zw
" re(1-pH)\ "G,
gy = ——2—(—pw+ 22y
S A UL &

Now consider the motion of tracer particles that are
initially well mixed in the x-z-u-w space, that is, uni-
formly distributed in position and having for their ve-
locity distribution the joint Gaussian. We will consider
the evolution of the marginal distribution p(z, u, w),
that is, we will presume that the introduction of a re-
flection algorithm at boundaries at z = 0, L does not
affect the distribution of particles along x.

If only the normal velocity is reversed on reflection,
an accumulation of mass results near z = 0 and a deficit
results near z = L, Figure 1 compares the marginal
pdf of u with its initial value at the wall, as calculated
by integrating the CK equation (1) over a single time
step. The well-mixed condition is not satisfied.

This failure is readily understood. Let us consider
an ensemble of possible velocity outcomes for a particle
which, at time # having state (zp, wp), undergoes re-
flection (i.e., wy has such a value as will take the particle
outside the flow domain). Then at time #n + 1, after
reflection, the velocities are w"*! = —(w, + Aw) and
u™! = (up + Au). Now noting that { wolp ) = po,0,,
and that Af, and A¢, are independent of each other
and of the state at time n, we find that the velocity
covariance at time n + 1 is {w""'u"*'y = —pg,0,,
that is, the covariance has the wrong sign. The obvious
fix is to reverse both w and u upon reflection. That
necessity is confirmed both by random flights and by
integration of the CK equation. In the Thomson model,
failure to reverse # upon reflection leads to an erroneous
u distribution near the wall, which impacts on the ver-
tical motion and thus the vertical mass distribution
through the coefficient a,,.

b. Bounded Gaussian inhomogeneous turbulence
(e.g., neutral surface layer)

Real turbulent flows are in general both inhomo-
geneous and non-Gaussian. But it is convenient, often
the best we can do, and can be surprisingly successful
(e.g., Flesch and Wilson 1992), to approximate non-
Gaussian turbulence as Gaussian. We now consider
whether smooth-wall reflection is acceptable for
Gaussian inhomogeneous turbulence, noting that
de Baas et al. (1986) have given an appealingly simple
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(but not rigorous) argument that smooth-wall (in their
terminology, “perfect’) reflection requires the velocity
pdf near the boundary to have the property that odd
moments vanish and even moments are constant.

Dispersion in the horizontally homogeneous, neu-
trally stratified atmospheric surface layer (NSL ) is well
modeled by assuming a height-independent Gaussian
velocity pdf g.(w) with ¢, =~ 1.3u,, and a time scale
T o z/ o, (inhomogeneity arises solely through 7). We
were unable to integrate analytically the Chapman-
Kolmogorov equation for this case, so we integrated
numerically over a single time step. We specified that
the tracer be well mixed initially over the range 0.1-5
m, and that 7 = 0.5z/s,,. We used time step Az = 0.01
s, which is less than a tenth of the smallest value taken
on by 7 within the system, 7(zz). At the lower boundary
the well mixed condition was satisfied to within 1%;
while at z = 2.5 m differences with respect to the initial
pdf occurred only in the fourth or fifth significant figure.
Thus from our consideration of the CK equation, we
see no problem with using smooth-wall reflection to
bound “NSL” turbulence.

On the other hand, random flight simulations using
smooth-wall reflection visibly violate the wmc, unless
u = At/7 is very small. It is shown in the Appendix
that this error is probably caused not by the reflection
algorithm, but rather by the discretization of the
asymptotically well-mixed model [Eq. (4)]; specifi-
cally, the cause is a bias in the random flight model
due to using a finite, height-varying time step A#(z)
= u7(z). As u (thus the time step) is reduced, this “At
bias error” decreases, and a well-mixed release con-
dition is more closely retained (though as p decreases
there is no reduction in the frequency of occurrence
of reflection, because with o, constant the boundaries
remain attainable).

For a sufficiently small time step, then, smooth-wall
reflection in conjunction with the RF model (Eq. 4)
satisfies the well-mixed condition for Gaussian tur-
bulence that is inhomogeneous only in its time scale.
It seems probable (though is not proven) that the need
for small At/ is mandated by the RF model itself [ Eq.
(4)] through the Chapman-Kolmogorov condition
(Appendix ), rather than being a requirement for valid
use of smooth-wall reflection. Since we cannot give an
analytical solution to the CK equation, we are unable
to state with certainty that smooth-wall reflection is
exact, though we expect it is, given the height inde-
pendence of g,(w) in this system. On the other hand,
we found that imposing “artificial unattainability”
(section 3) of the plane z = z; resulted in gross violation
of the wmc.

What about application of smooth-wall reflection in
the more general case of a Gaussian velocity pdf having
height-dependent variance? In the context of the at-
mosphere, it will normally be reasonable to assume
that the gradient in velocity variance d¢2/dz vanishes
within approximately one length scale of ground (the
normal assumption in simulating dispersion over a
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rough surface; we parameterize the UBL by setting o,
constant and 7 — (). With that proviso, anticipated
by de Baas et al., smooth-wall reflection at ground will
suffice in Gaussian turbulence.

8. Reflective boundaries for skewed turbulence

We begin this section by querying whether any re-
flection algorithm can rigorously satisfy our expanded
wme, when used to reflect particles at a (computa-
tional ) boundary where the turbulence is skewed. The
following argument suggests not.

Consider an arbitrary Eulerian velocity pdf g,(z, w)
in the bounded flow domain z = 0. Suppose at t = 0
we have a well-mixed distribution of tracer, and that
we calculate trajectories out to some small time ¢ = Af
with a well-mixed LS model, supplemented by a correct
reflection scheme. Then the state at time At is well
mixed. Let ¢ > 0 be some infinitesimal length. Particles
that arrive at e from initial position z, either had ve-
locity wy = —(zp — €)/ At (no reflection) or wy = — (2o
+ €)/At. The state at Az is

+ZQ
R ,Az—6 0
oo - 22

slem=2 |

At Jzp=0

+
X ga(ZO: - : Zo)dzo

1 foo € — 2o € — Zp
+ — w| W, Af|——— ,0 2o, dzy,
5 o o T 0 o 20 2

A At
where p,, is the transition density for velocity, and the
superscript R denotes the reflection path.
Now integrate both sides over all w, noting that p,,
and pR (which contain all the information about the
hypothetical correct reflection scheme) have unit area

f ga(f, W)dw

-l_ O

€ — Zy €+ zg
= ” Z’ + Z,— dZ.
At Jz-0 [g( At ) g"( A )] 0

Letting ¢ = 0, we have

0

1= Zf Zo(—W' AL, wdw'. (6)
This can only be true if g, is symmetric in the velocity,
and independent of height over a distance above the
boundary that much exceeds o,,A¢. Thus we anticipate
that no reflection scheme can be correct (consistent
with the well-mixed constraint) if it is applied at a
boundary where the turbulence is skewed, or locally
inhomogeneous.

We next show that smooth-wall reflection is certainly
incorrect in skew turbulence. Following Baerentsen and
Berkowicz (1984 ), we may form a skewed velocity pdf:

8a(2, w) = A(2)G4(z, w) + B(2)Gg(z, w), (7)
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where G, and G are Gaussians having nonzero means.
According to Quintarelli (1990) this may be contrived
to fit observed vertical velocity distributions in the
convective boundary layer (CBL) quite well, and it has
formed the basis for random-flight simulations of the
CBL by Baerentsen and Berkowicz (1984), Luhar and
Britter (1989; hereafter LB), and Weil (1990). Details
for fitting Eq. (7) are given by these authors.

Corresponding to this specification of the Eulerian

vertical velocity pdf, there is again a unique well mixed
model for motion along that dimension. Rather than
write down this model, for which the coefficient a(z,
w) is rather complicated even in the homogeneous case,
we refer the reader to Luhar and Britter.
__We examine the homogeneous case, and specify
w? = 0.5, w3 = 1.0, and = = 1.0. A single particle is
released at ¢ = Q0 with a random vertical velocity (chosen
from the specified skewed pdf) at a random height in
the range (0, 1). We impose smooth-wall reflection at
z = 0, 1. Figure 2a gives the concentration (pdf for
position ) at ¢ = 1.0 according to two independent sim-
ulations, using on the one hand the random-flight
method, and on the other, repeated integration of the
Chapman-Kolmogorov equation (2); in both cases At
= 0.1. Bearing in mind that for a finite number of
trajectories the random-flight simulation gives only an
estimate of the ensemble parameters, the two methods
agree satisfactorily (as indeed they must).

The agreement of these two simulations merely
demonstrates that the transition probability corre-
sponding to the LS model has been correctly formu-
lated, and the CK equation solved accurately. What is
of greater interest in Fig. 2a is that, as anticipated by
our earlier reasoning, the well-mixed condition has
been violated. Since the LS model is “well mixed” in
an unbounded domain, this failure can only be due to
the reflection scheme.

Figure 2b, from the CK simulation, shows that the
velocity pdf’s near the walls at ¢ = 1 differ grossly from
the correct pdf g,. We interpret the unmixed concen-
tration profile as follows. Since Sk, > 0, the mean
downward velocity,

0
wy = f_ ga(w)dw,

has a smaller magnitude than the mean upward veloc-
ity,

wh =f0 ga(w)dw,

yet zero mean velocity results because downdrafts pre-
dominate statistically. When smooth-wall reflection is
used at z = 0, each arrival velocity w™ is mapped to
departure velocity w* = —w™, and thus w* occurs with
probability density g,(w™) rather than g,(w™). The
resulting velocity pdf near the wall is more nearly sym-
metric than the proper (skewed) distribution g,(w),
as can be seen in Fig. 2b. The result of this distortion
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KG. 2. Application of smooth-wall reflection in one-dimensional
skew homogeneous turbulence with velocity statistics w? = 0.5, w?
= 1.0, 7 = 1. Initial state well mixed, underlying LS mode! for skew
turbulence that of Luhar and Britter (1989). Time step for calculations
(random flight and Chapman~Kolmogorov) was A¢ = 0.1. Numerical
integration of CK equation with w € (—Se,, 504), Aw = 0.050,,
Az = 0.01. (a) Density profile at t = 1.0 (calculated both by random-
flight method and by integrating the CK equation), showing decay
of the initially well-mixed state. (b) Comparison of pdf of w at ¢
= 1.0 with correct (well mixed) pdf, g,(w), showing that the pdf is
distorted throughout the flow domain. Note the increased symmetry
of the distorted pdf’s.

is that the mean upward velocity near z = 0 is too
small, causing surplus concentration at the wall. The
opposite argument applies at the top boundary.
Smooth-wall reflection, applied at a location where the
pdf of the normal velocity is skewed, is incorrect.

We have reasoned that there is no rigorous reflection
algorithm to bound skewed and/or inhomogeneous
turbulence. However, that fact does not prohibit the
existence of reflection algorithms that, for suitably small
(but finite) Az, are acceptable in practice. Unfortu-
nately, we are unable to make any general statement
about the magnitude of errors that are liable to result
from invalid reflection rules; there are simply too many
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factors: the nature of the turbulence profiles near the
wall, the source location, etc. To illustrate these factors
we will look at the behavior of the error that arises
from using perfect reflection in the doubly bounded
domain (reflection at z = 0, L) of homogeneous skew
turbulence considered above.

We again use the well-mixed initial condition, elim-
inating release height as a factor in the reflection error.
Then if we define C* to be the correct concentration
(1/L), that is, that which would be observed if the
reflection scheme caused no error, then on the basis of
a dimensional analysis the functional dependence of
the fractional error is

CcC-C* t w3 At T
o P}

Lie, ¢ 7 Lja,|

For the present system it is found that for sufficiently
large ¢ the concentration error approaches a steady state
(Fig. 3). The steady-state fractional error is larger, and
is achieved more slowly, when the domain size is in-
creased relative to the turbulent length scale. This sug-
gests that the existence of a bound to the reflection-
induced error is a consequence of complementary re-
flection errors (as discussed above) at the two walls,
rather than inherent self-compensation of the error.
This is significant, because when we first noted the
steady-state limit, we suspected self-compensation
might be arising by the mechanism that the very in-
validity of the perfect reflection rule results in some
particles near the wall (those that have been reflected)
having a velocity pdf that is closer to being symmetric
than would otherwise be the case, and for which con-
sequently the reflection rule is closer to being valid.

We found that the steady-state reflection error in the
present simple system depends linearly on skewness
Sk (rather than on Sk'!/3). We also noted a dependence
of the steady-state error on At/7, which is surprising,
because in homogeneous turbulence the velocity pdf
of hitting particles does not vary with the distance from
which they arrive, nor does the frequency of occurrence
of reflection per unit time change with Az.

We believe that, in general, there is no asymptotic
limit to the reflection error, but that at any time the
magnitude of the error, as well as depending on release
position and flow properties, will depend upon the
skewness of the Eulerian velocity pdf at the mean po-
sition of occupancy of particles immediately preceding
the distance step that brings them to the boundary. A
similar situation must obtain with respect to inho-
mogeneity in velocity variance. Considering the infinity
of possible selections of turbulence profiles near a
boundary, we can give no general quantitative bound
to the reflection error that might arise.

We have noted that the nonexistence of an exact
reflection scheme for the case of skew turbulence does
not prevent the existence of schemes that are better
than perfect reflection. We end this section by com-
paring results using perfect reflection with results of a
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tiT

F1G. 3. Evolution of the fractional error in near-boundary con-
centration caused by using smooth-wall reflection at z = (0, L) to
bound a domain of homogeneous skew turbulence. Turbulence
properties o, = Sk, = 7 = 1, time step At = 0.1, several values of
domain depth L.

scheme proposed for homogeneous skewed turbulence
by Weil (1990).

Suppose a particle crosses z = 0 with velocity w™.
Then under Weil’s scheme it is reflected with velocity
w* as defined implicitly by

0 wt
f_ga(W)dw | &(w)dw

w

i [ samaw

We tested Weil’s algorithm in homogeneous skewed
turbulence in the domain z > 0, using a simplification
of the Luhar-Britter model to the homogeneous case.
The scales of motion were specified to be o,, = 1, Sk,,
= 1, 7 = 1. We numerically integrated the Chapman—
Kolmogorov equation over a single time step Az = 0.1,
to obtain the state function p(z, w, At) for an initially
well mixed distribution. Our velocity discretization was
(—S64 < w < 50,, Aw = 0.014,). Since we were in-
terested in p(z, w, At) very close to z = 0, we limited
the height integration to contributions from initial
heights z; < 50,7, using resolution Az, = 0.01.

Both Weil’s scheme and perfect reflection gave in-
correct density and velocity pdf (Fig. 4) at the wall
after only a single time step. The irregularity of our
calculated pdf for the Weil scheme is due to imperfect
numerical integration of the CK equation. We do,
however, feel confident that the velocity pdf exhibited
by a population of particles in a random-flight model
would be a smoothed version of what we have calcu-
lated, so we believe that Weil’s reflection scheme,
though not correct, does a better job of retaining the
proper pdf asymmetry than does the smooth-wall re-
flection scheme.

fow ga(w)dw

9. Bounding the convective boundary layer

In the CBL, g,(w) is inhomogeneous and skewed.
Therefore CBL dispersion models using reflection to
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F1G. 4. Erroneous normal velocity pdf’s at z = 0.005 resulting
from application at z = 0 of smooth-wall reflection or of Weil’s re-
flection scheme for skew turbulence. Homogeneous skew turbulence,
with ¢, = Sk, = 7 = 1. Integration of the CK equation from an
initially well mixed state to ¢ = 0.1, using w € (-5, 5), Aw = 0.01,
Az = 0.002. Final pdf’s block averaged over w = +0.1.

bound the particle domain will only satisfy the wmc if
profiles of the velocity moments, time scale, and time
step are appropriately tailored at the boundaries. In
this section we examine how particles are confined to
the flow domain in two recently reported random-flight
models of the CBL.

Luhar and Britter (1989; hereafter LB) and Weil
(1990) both presented random flight simulations of
dispersion from sources in the CBL, using essentially
the same well mixed (as At — 0) model, and with
perfect reflection at z = 0 and at the top of the bound-
ary-layer z = §. Their parameterizations for the tur-
bulence statistics differed markedly near the bound-
aries. In both cases <w3> vanished at z = (0, §), but
LB used Sk,, = 0.8 (for all z), while Weil’s parame-
terization had Sk,, = 0 at the boundaries due to nonzero
<w2> at those points. LB did not resolve a surface layer,
but 1mposed at z = 0 (and z = §) vanishing o, and 7
and a very large gradient do,,/dz. In our LB simulation
(see below) with At/7 = 0.001, no particles crossed
the boundaries (reflection never occurred; presumably
this was fortunate, since with drastic inhomogeneity
of the velocity pdf near the boundary, perfect reflection
is incorrect). In contrast to the LB parameterization,
Weil’s gave the semblance of a normal surface layer
near ground (o, = 1.3u,, and a small and linearly
increasing length scale), and required a reflection al-
gorithm no matter how small At (reducing At/ did
not reduce the frequency of occurrence of reflection).

Using these models, we calculated the evolution of
an initially well mixed distribution of particles (Fig.
5). In both cases, the well-mixed distribution was re-
tained for a sufficiently small choice of the time step.
With the LB model, because of the infinite gradient in
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velocity scale at z = (0, §), inadmissable velocities (ex-
ceeding 6/ At) sometimes occurred unless At < 0.1 7(z),
a stronger limitation than expected. Luhar and Britter
used a much larger (and constant) time step Az = (0.01,
0.02, 0.05)6/w, exceeding 7(z) near boundaries and
imposed a numerical constraint g,(w) 2 gmi, to prevent
unrealistic velocities (A. Luhar 1992, personal com-
munication).

There is no way to tell whether the unmixed profiles
that result when At/7 is only moderately small [e.g.,
0.1, which value in homogeneous turbulence would
result in discretization errors of less than about 2%;
Wilson and Zhuang (1989)] result principally from
reflections (in both cases reflection is less valid with
increasing At), or from the size per se of the time step
in relation to the inhomogeneity of the velocity statis-
tics. Perhaps the very question is meaningless. What is
certain is that for one reason or the other (reflection—
strong inhomogeneity ) the time step needs to be very
small [in relation to 7(z)] in both parameterizations,
even though “inhomogeneity time scales’ such as

. ( alniv_Z)—' o ( am?ﬁ)—'
Tx = | Ow , Tx — | Ow

0z dz

are not substantially smaller than . Computation time
for the LB scheme, due to its vanishing o, and 7 at 0,
& (unattainable boundary for small-enough Ar), is
much longer than for the Weil scheme.

Thus in both models, boundaries have been suc-
cessfully imposed (i.e., in such a way as to preserve the
well-mixed property of the random flight algorithms).
In the case of the LB model (which has here been im-

0.8 (

0.6 r

04 F

02t
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FIG. 5. Random flight simulations of the evolution of an initially
well mixed concentration profile (C = 1)in the convective boundary
layer. Profiles at ¢ = §/w, according to the Weil (W) and Luhar-
Britter (LB) models. Legend gives At/ 7.
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plemented so as to make At/ everywhere small), con-
finement resulted from making the boundaries unat-
tainable (reflection, which would be invalid, did not
occur). On the other hand Weil’s near-wall flow sta-
tistics are such that, though reflection did occur, it was
applied to particles coming from such close proximity
to the boundary that neither inhomogeneity nor skew-
ness in that shallow region compromised excessively
the use of perfect reflection.

10. Conclusions

One way to test whether a discrete-time (i.e., prac-
ticable) Lagrangian stochastic model obeys the well-
mixed criterion is to simply calculate the evolution of
an initially well mixed particle distribution. We have
shown that it can be a useful alternative to formulate
that test probabilistically, using the Chapman-Kol-
mogorov equation to calculate the evolution of the
particle position-velocity distribution. This requires
construction of the transition density corresponding to
a chosen LS model, by steps that we have demon-
strated, and our approach results in a novel expression
of the wmc that shows that if an LS model (for sta-
tionary flow) is to fail the wmc, it must do so on the
first time step.

In this framework, which we believe is uniquely ap-
propriate to the task, we have examined the device of
particle reflection. We have proven that perfect reflec-
tion is in restricted circumstances rigorous, but that
where it fails, no alternative and rigorous reflection
scheme exists. This is not to say there are not schemes
that are berter than perfect reflection, and that for suit-
ably limited time steps might be acceptable in practice;
indeed, Weil’s scheme for reflection in skew homoge-
neous turbulence performs better than smooth-wall re-
flection for that case.

Imposing an unattainable boundary (i.e., incorpo-
rating realistic profiles of velocity statistics right to the
boundary) may require a prohibitively small time step,
whereas trajectory reflection is an efficient means to
bound the particle domain. We have noted that velocity
statistics at true boundaries (e.g., the ground) are un-
known, since there is a/ways an unresolved basal layer
(UBL) implicit in atmospheric simulations. Therefore
one is free to design profiles of velocity statistics (and
the time step) that legitimize the reflection algorithm.

What is required, if reflection is to be used, is that
the velocity pdf be both symmetric about w = 0, and
height independent over the largest distance (from the
boundary) that might be traversed by a particle during
the step over which reflection occurs. Assuming skew-
ness vanishes at the boundaries, the simplest approach
is to make the time step as small as necessary to satisfy
the wmc. Alternatively, one might place at ground a
homogeneous Gaussian layer (spanning z = 0 to z
= A, say) whose time scale and velocity scale ensure
that any reflected particle makes at least one stop (at
z < A) on its way to and from ground. An objection
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at once occurs: the required profiles may necessitate
the tiny time step one hoped to avoid.
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APPENDIX

Discretization Error Due to
Turbulence Inhomogeneity

Gillespie (1992) has analyzed formally the discret-
ization error resulting from ‘noninfinitesmal” ap-
proximation of a continuous Markov process. Consider
a one-dimensional Langevin equation for the vertical
motion of a particle:

dw = A(z, wydt + B(z)V&N
dz = (w + dw)dt,

where N is a Gaussian random number (mean zero,
unit variance). Gillespie requires that the noninfini-
tesmal model should satisfy the “Chapman-Kolmo-
gorov condition,”

dw(t, t + At) = dw(t, t + aAt)
+ dw[t + aAt, t + aAt + (1 — a)Ar],

where 0 < g < 1 and the notation dw(¢, t + Af) in-
dicates the increment in w over interval (z, ¢t + At).
Substituting the Langevin equation into this condition,
then expanding 4 and B in their Taylor series (trun-
cated at first order), and conservatively simplifying,
one obtains the following restrictions on the magnitude
of the time step Az, due to inhomogeneity:

194|148 <, |8.BIA < [9yA]A <,
(wd,(Ind)|dt <, |wA™'8,B|dt'? <,
where 0 < e <€ 1.

a. Application to the neutral surface layer (NSL)

In the usual treatment of dispersion in the horizon-
tally uniform NSL, inhomogeneity arises solely through
a height-dependent decorrelation time scale, 7 = 8z/
o, (best agreement of random flight simulations with
experimental data is obtained with 8 ~ 0.5, Wilson et
al. 1981). Gillespie’s analysis, applied to the well-mixed
model [Eq. (4)], 4 = —w/7 and B = (2¢%/7)'/?, re-
quires a time step satisfying

Ar [ (
— < min| e,

T

€, )”2 e, V2e 262]

lwig) >Iwig’ 8 8>

where € < 1.

b. Unmixed concentration profile in NSL due to
discretization

How small ¢ actually needs to be depends how large
a departure from an initially well-mixed concentration
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FIG. Al. Violation of the well-mixed condition by an asymptotically
well mixed random flight model [Eq. (4)], due to a finite, biased
time step. Evolution of an initially well mixed concentration profile
C = C* = (ZT — ZB)™! in the neutral surface layer, with perfect
reflection at (ZB, ZT). Time step At = 0.17 (¢ = 0.1), time scale T
= 0.5z/0,, Uy = 0.3 m s~!. RF concentration profile is compared
with Eq. (A5), with a = 14. (a) (ZB, ZT) = (1.0, 5.0) m, C*
= 0.25. Random-flight profile at = 10 s. Discrepancy between RF
and Eq. (A5) near the top boundary is probably a near-field effect,
not accounted for in Eq. (AS), whose derivation assumes a far field
diffusivity. (b) (ZB, ZT) = (0.1, 5.0) m, C* = 0.204. Random-flight
profile at 1 = 100 s. Agreement of the RF profile with Eq. (AS)
strongly suggests the violation of the wmc is due to At bias error, and
not a consequence of the smooth-wall reflection algorithm.

0.22 0.24

field we regard as significant. For present purposes, we
do not want to spuriously conclude that a reflection
algorithm is to blame, if there arises a violation of the
wmc due to failure to impose the above conditions
sufficiently rigorously. It will help in this regard if we
can anticipate the form taken by any violation of the
wmc due to a too large time step.

Whenever a finite time step Af(z) = ur(z) is em-
ployed in an RF model in a region where d7/9z is
nonzero, a model bias arises. Suppose d7/9z > 0, as
in the NSL. At location z, a time step u7(2z;) is chosen,
and the particle moves from z, to z,. Then for upward-
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moving particles (z; > z;), the time step ur(z;) is
smaller than the average of u7(z) along the step z,
— z;. The opposite is true for downward-moving par-
ticles; thus the bias.

A typical value for z, — z, is 5,,At, s0 we can estimate
the bias in time step as

A(At
At — At} ~ awAt—g-—). (A1)
oz
In the NSL, = = 8z/0,. It follows that (assuming
equality in the above approximation)

Aty — A _

A7 uB, (A2)

which has the necessary property of vanishing as either
u or 8 vanish. The consequence of this biased time step
is that when we consider an ensemble of many trajec-
tories, a velocity bias arises, its value in the case of the
NSL being wg = —auflo,,, where o is expected to be
of order 1 (from Fig. A1 we conclude a« = 1/3). This
bias is not to be considered as acting causally at any
instant in the trajectory of a single particle, but rather
as arising in the sense of a law of large numbers.

Now if we start from a well-mixed initial condition
and calculate the paths of many particles in a bounded
region of the NSL, this bias will cause violation of the
wmc. At large times after release, we can expect that
a steady-state error will exist such that diffusion along
the erroneous concentration gradient will balance the
bias flux wzC:

0
waC - KE — 0, (A3)
a9z
In the NSL, K = 027 = Bo,z, and it follows that

dInC _
gz

(A4)

Assuming the domain is bounded at zrand zz and that
the total mass is 1 [so that the well-mixed concentration
1s C* = 1/(zr— zg)], we expect the long-time unmixed
concentration profile, arising from the time step bias,
to be approximately

(A5)

Figure A1 shows the outcome of random-flight sim-
ulations [asymptotically well mixed LS model, Eq. (4)]
of the dispersion of initially well-mixed particles in the
NSL, using smooth-wall reflection to bound the do-
main. Equation (AS) (with o = 1/2) agrees so closely
with the unmixed concentration profiles of the RF
model, that we conclude the RF error is “At bias error,”
and not a consequence of the reflection algorithm. The
bias velocity causing violation of the wmc in Fig. Al
1s small, wg/a,, = —0.025.
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