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ABSTRACT

From an analysis of scales in the cloud droplet collision problem, the authors infer that a trajectory model
that is to be capable of predicting collisions between droplets of all possible sizes should be of second-order,
that is, should explicitly model particle acceleration. But for collisions between large droplets (radius about 50
um or larger), which are still much smaller than raindrops, a first-order model is appropriate.

The relative motion of large droplets are studied with a first-order, two-particle trajectory model. Turbulence
is found to be unimportant (relative to differential gravitational settling) if the (large) droplet sizes are suffi-
ciently distinct. Zeroth-order two-particle models, of the type hitherto applied to the problem, deteriorate in
accuracy as the influence of turbulence on the droplet separation increases, that is, for large ¢,/v’, where o, is
the turbulent velocity scale and v’ is the droplet still-air terminal velocity. Under no circumstance is a single-

particle model applicable.

1. Introduction

It has been recognized for a long time that turbulence
can influence collisions of cloud droplets, possibly
spurring the growth of cloud droplet size between the
ranges where (initially) effects of condensation and
then (finally) gravitational coalescence dominate
(Rogers and Yau 1989). Over the last two decades, a
number of theoretical investigations have been done on
this subject, and in some of them the Lagrangian sto-
chastic (LS: i.e., trajectory or ‘‘Random Flight’’) sim-
ulation has been employed (e.g., de Almeida 1976,
1979a, 1979b; Reuter et al. 1988).

Quantitatively the effect of turbulence is expressed
in the stochastic collection equation (SCE) for the evo-
lution of the cloud droplet number density distribution
function, N(V, ¢), (m~°). This function is defined such
that N(V, t)dV is the average number density (m™) at
time ¢ of cloud droplets of a size lying within droplet
volume interval (V, V + dV). The SCE is

\'
aQtN(V’ 1) = -;—J; NV — v, t)N(v, )K(V — v, v)dv
- NV, 1) f N(v, )K(V,v)dv, (1)
V]

where K(V, v) is the collection kernel (m* s '), relat-
ing to the probability that a droplet of volume V will
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collect a droplet of volume v (in given time, etc.).
Given K(V, v), which is to some extent influenced by
turbulence, the SCE determines the evolution of an ini-
tial distribution of droplet volume N(V, ;).

A trajectory simulation is the natural way to study
the movement of small particles in turbulent flows, for
example, in order to calculate the collection kernel.
However, to the authors’ knowledge, in LS models ap-
plied to date for cloud droplet collisions, the correlation
of cloud droplet velocity between consecutive instants
was not accounted for; that is, the random displacement
of a cloud droplet was assumed to be Markovian. This
is incorrect when calculating a cloud droplet trajectory
over a time period shorter than the integral timescale
of the background turbulent field because the displace-
ment of a particle can be taken as Markovian only when
the travel time of interest is much longer than the in-
tegral timescale of the droplet velocity (Sawford
1991). Another problem associated with some earlier
LS simulations of cloud droplet collisions was the use
of independent, single-particle trajectories (single par-
ticle models). This in principle is not acceptable be-
cause the movements of nearby cloud droplets are
highly correlated (in space).

For reasons that will be given in section 3, in this
paper we study collisions between large droplets [by
large we mean that the radius (r) of droplets r = 50
um]. For simplicity, we take the coalescence efficiency
to be unity (cloud droplets merge upon collision ), and
hydrodynamic effects when drops are in close prox-
imity are neglected. Although ‘‘large—large’ colli-
sions are much less frequent than ‘‘large—small’’ or
‘‘small—small’’ collisions, their contribution may be
important because overtaking a single large drop (~50
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pum) is equivalent to collecting many (~100) small
(~10 pm) cloud droplets. On occasion, the majority of
cloud droplets may be quite large as a result of flow
difluence at the upper parts of the cloud (Kogan 1993).

2. Relevant scales in the cloud droplet collision
problem

Before considering the class of Lagrangian stochas-
tic model that might be appropriate in studying cloud
droplet collisions, we need to establish some critical
timescales of the problem. In doing so, we recognize
that turbulence statistics differ in different kinds of
clouds, and even within one cloud there is spatial vari-
ability.

In mature cumulus clouds, typical values for the
standard deviation of the vertical velocity fluctuation
and the rate of dissipation of turbulent kinetic energy
(TKE) are 0, = 2.0 m s ' and € = 0.02 m? s (Weil
et al. 1993). Extreme values in the literature are e

- =0.0003 m®s~* for small cumuli (Ackerson 1967)
and € = 0.25 m* s in very strong cumulus congestus
(Panchev 1971). Assuming for the kinematic viscosity
of cloud air v = 1.2 X 107> m? s ', the corresponding
range in the Kolmogorov timescale #, = (v/e)'?,
which characterizes the smallest eddies in the flow, is

- about 107> < t, < 107" s. The corresponding Kol-
mogorov length scale n = (v*/¢)"* is in the range of
100*=<np=<10"m.

The Kolmogorov (inner) scales describe the mini-
mum lengths over which changes (in velocity) occur
in the airflow. These are to be contrasted with the La-
grangian integral (outer) scales, which measure typical
spatial and temporal persistence of the turbulent veloc-
ity. In stationary, homogeneous turbulence, the La-
grangian integral timescale can be determined from the
velocity variance (o%) and the TKE dissipation rate (¢)
as (Tennekes 1979)

2
_ ZUV
C()€ ’

where C, is a (supposedly) universal constant (C,
= 3.0, according to Du et al. 1995). Adopting oy ~ 1
ms~', then T, = 10 ~ 10?* s, and the Lagrangian in-
tegral length scale is L = o, T, = 10 ~ 10° m. It is our
proposition that in some regions of real clouds there
exists a wide separation in scale between the dissipation
range and the energy-containing range of scales; that
is, t, <€ T, and n < L. The truth of this bears on the
validity of the model we later construct for droplet
paths.

Now we want to establish a timescale ¢. character-
izing the collision interval, which will limit the per-
missable timestep Af upon which we discretize droplet
trajectories. First, consider nonprecipitating cumulus,
wherein the liquid water content is of order 1 gm™ and
the mean radius of the cloud droplet is about 5 ym
(Pruppacher and Klett 1978, pp. 14—16). It follows

T,

(2)
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from simple geometry that, assuming a uniform spatial
distribution of droplets, the mean separation (d) be-
tween neighboring cloud droplets is about 10 ~* m; that
is, d < L. It seems d/n could be of the order of unity
in small cumuli and about one order larger in deep con-
vective clouds.

For the purpose of discussion, assume (temporarily )
that the separation d satisfies the conditionn <€ d < L.
Using dimensional arguments, 6d/6t ~ (ed)'"*. It fol-
lows that for two cloud droplets separated by d, a col-
lision takes place at intervals of order t, ~ (d*/e)'”?
~ 1072 — 107" s. This is about the same order as the
Kolmogorov timescale. If d were of the same order as
7, it is very unlikely that the collision time interval ¢.
could be larger than the Kolmogorov timescale. Hence
for the small droplets, the discretization time step At is
necessarily small with respect to #,, and droplet accel-
eration is an autocorrelated time series.

In contrast, for large cloud droplets of radius r = 50
pm, it is estimated that the separation between neigh-
boring drops is of order 102 m, so if the turbulence in
the cloud is strong (¢ ~ 0.1 m? s*), the collision in-
terval is about z. ~ 10~' s. This is an order of magni-
tude larger than the Kolmogorov timescale (~107?),
yet much smaller than the Lagrangian timescale (~10
s), that is, ¢, is well within the inertial subrange. In this
case it is appropriate to consider droplet velocity and
position to (jointly) constitute a Markov process.

3. First-order two-particle LS model for collisions
between large droplets

a. Model order

Sawford (1991) summarized the hierarchy of LS
models in a study of Reynolds number effects in LS
models of turbulent dispersion. According to Sawford,
the appropriate order of LS model to be used is deter-
mined by the ratios ¢/¢, and ¢/T,, where t is the time
interval of interest. We will assume the cloud turbu-
lence can be regarded as homogeneous, isotropic, and
stationary: probably a satisfactory assumption, since
the separation of initially nearby cloud droplets is
caused by the smallest-scale eddies of the field having
approximately this simple statistical structure.

If t > T, a “‘zeroth-order’’ LS model

dX' = 2Kd¢' 3)
is sufficient to study the displacement of tracer ele-
ments (random walk in position). In (3) and hereafter,
d¢' is the increment of a Wiener process (i.e., d¢' is a
Gaussian random number with zero mean and variance
dt). The superscript i is the direction index, and K is
the eddy diffusivity, K = o3 T, . This very simple model
is acceptable because both acceleration and velocity are
uncorrelated over discretization intervals At satisfying
T, < At. However, this model is inapplicable to our
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cloud droplet problem: we have argued (section 2) that
the collision interval (thus ¢, the duration of simula-
tions)ist. < T,.

At the other extreme, if #./1, is small or order 1, the
only permissible choice is a ‘‘second order’’ model, in
which the acceleration, velocity, and displacement of
the moving tracer particle are taken to be collectively
Markovian, and the acceleration is modeled as an au-
tocorrelated stochastic process. From section 2, we
conclude that for a general study of cloud droplet col-
lisions, one indeed requires a second-order model. This
is a difficulty because such models are not well devel-
oped.

However, for collisions between large cloud drop-
lets, and provided the turbulence in the cloud is strong,
the required duration of a simulation of the droplet tra-
jectory (estimated in section 2 as ‘‘z.’’) satisfies t/t,
> 1, and ¢/T, is finite. In this case a ‘‘first-order’’ LS
model is appropriate (Thomson 1987): we can choose
a time step At in the range #, < At < T to resolve the
evolution in velocity and position over time period ¢
(Lagrangian acceleration correlation vanishes over
time steps At > t,). The uniquely correct LS model
(for a single nonbuoyant tracer particle in homoge-
neous, isotropic turbulence) is (Borgas and Sawford

1994)
P Ui 2 i
dU' = —TLdt+UV‘/_TLd§’

dX'=U'ds. (4)

b. Need for a two-particle model

If the separation of two cloud droplets is not much
larger than the integral length scale, their movements
are spatially correlated because the movements of the
fluid elements embedding them are correlated. Turbu-
lent fluctuations at one point can be viewed as the su-
perposition at that point of an ensemble of eddies hav-
ing different scales and orientations (Townsend 1976).
Relative motion (due to turbulent fluctuations in the
cloud) of a pair of particles is caused by eddies of sizes
smaller than, or of the same order as, the separation.
Larger-scale eddies cause only a coordinated displace-
ment of both droplets together. So we conclude, in
studying collision problems, it is not appropriate to use
a single particle model in which the motion of any par-
ticle is assumed independent of all others, and the rel-
ative motion of a pair of particles is attributed to all
eddies of various scales. An example of single-particle
model is the work by Reuter et al. (1988), who chose
a constant diffusivity, rather than a diffusivity depen-
dent on the separation according to Richardson’s law,
to study relative movement between two air elements.

c. A heuristic model for trajectories of large droplets

We consider two large cloud droplets of radii r, and
r, moving in a turbulent flow. Since the three compo-
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nents of the relative velocity of air elements that carry
the droplets are not independent (being constrained by
the incompressibility condition), a three-dimensional,
two-particle model must be employed. If we assume a
small enough droplet Reynolds number Re = réU/v
(where 68U is the velocity of the droplet relative to the
surrounding air, and r is r, or r,), then the air-droplet
drag is linear in relative velocity, and we may write a
first-order model:

dv: 1 ) ) ;
7‘=T—:(U1 - Vi) —gé*,

axi i

Zloyi,

dt :
dv} 1 . ) ,
72=;—2(U'2— V) — g™,

dax; A

=V5, 5
i 2 (5)

where the superscript (i) is the direction index; the sub-
script (1 or 2) is the droplet label; V is the droplet
velocity; U is the velocity of the air surrounding the
droplet; X is the droplet position; g is the gravitational
acceleration; and 7, is the droplet aerodynamic re-
sponse time (time constant for response to a step
change in the velocity of the surrounding air) . For large
cloud droplets, the following empirical formula for 7,
is appropriate (Pruppacher and Klett 1978, p. 324;
Rogers and Yau 1989, p. 126):

8000r
Ta = 3
8

where r is the radius of the droplet.

Kaplan and Dinar (1988 ) have given a heuristic two-
particle model for the evolution of the velocity of a pair
of fluid elements in stationary, homogeneous, isotropic
turbulence:

Ui(t+ At)
= R (A Ui(1) + [1 — RE(AN]'"?01 (1),
Ui(t + Ar)
= R (ANUS() + [1 — RI(AN]'"2605(1),
Ui(0) = 61(0),
U5(0) = 65(0), (7)

where R, (At) = exp(— At/T,) is the Lagrangian tem-
poral correlation coefficient, and 8 is a random field
that is spatially correlated but temporally uncorrelated
from ¢ to ¢t + At. By assuming the spatial correlation
between the components of (¢) is equal to the spatial
Eulerian velocity correlation of the turbulent field, and
using the conditions of continuity and isotropy, Kaplan
and Dinar developed an algorithm to calculate the ran-
dom field 6(¢). The 6 field is strongly dependent upon

(6)
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the separation of the two moving particles: only when
the separation is much larger than the Eulerian length
scale do 6, and 8, become uncorrelated. For a detailed
description of construction of the # field, please refer
to the original paper.

The Kaplan-Dinar model is used to calculate the
driving fluid element velocity (i.e., velocity of the fluid
element surrounding the cloud droplet). Since the driv-
ing fluid velocity time series is not a Lagrangian series
(i.e., at different instants the droplet is surrounded by
different air elements), we reduced the Lagrangian
timescale 7}, in the manner suggested by Sawford and
Guest (1991):

2 tN2T7-1/2
eerl1- (2]
Ty
N2T1—1/2
ng=TL[1 + (ﬂ—”> ] .
Oy

This accounts (heuristically) for the ‘‘crossing trajec-
tory’’ effect (Csanady 1963), that is, the fact that the
cloud droplet is not accompanied and driven by the
same air parcel at different times. In (8), v’ is the ter-
minal velocity of the cloud drop in still air, related to
T, by v = T,g; B relates Lagrangian and Eulerian
length scales (defined as 8 = o T, /Ly, L;is the Eulerian
integral length scale in the vertical direction); and fol-
lowing Sawford and Guest we set 8 = 1.5. Equation
(8) is simply an interpolation between the integral time
scales for a passive tracer and for a particle of very
large terminal velocity relative to the ambient fluid. For
passive tracer v’ = 0, and the timescale reduces to 7} ;
for particles of large velocity relative to the surround-
ing air, the timescale becomes Lg/v’ (L; is Eulerian
length scale of the turbulence ). Here L, takes values L;
for the direction parallel to the external force and L/2
for the direction perpendicular to the external force.

(8)

4. The collision probability and the collection kernel

The movement of a cloud droplet can be divided into
two parts: movement with the ambient air and move-
ment relative to the ambient air (Saffman and Turner
1956). For a very small cloud droplet, the former dom-
inates, that is, the turbulent motion of the air controls
the movement of the droplet, while for a very large
droplet, movement is mainly of the latter type, because
in this case the turbulent fluctuation of the cloud air
hardly affects the droplet’s movement.

When only movement relative to the ambient air is
present, the collection kernel in the SCE has the fol-
lowing simple form (Rogers and Yau 1989, p. 130):

K(V,v) = n(R + r)*|u(R) — u(r)| E(R, 1), (9)

where E(R, r) is the collection efficiency, the product
- of collision efficiency, and coalescence efficiency. The
droplets radii R and r are trivially related to V and v by
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V = (4/3)7R* and v = (4/3)nr’. We here set E = 1,
which assumes that as two cloud droplets approach, one
droplet’s trajectory is not affected by the presence of
the other droplet, and that those two droplets coalesce
upon collision.

When movement with the ambient air is involved
(smaller droplets), the collection kernel becomes far
more complicated. For this case, whether or not two
cloud droplets can collide depends on the turbulent
field in the cloud, in addition to their (initial) relative
positions. From the model outlined in the last section,
we can calculate the trajectories of a pair of cloud drop-
lets for any given initial separation. When the separa-
tion (between the centres of the two droplets) is equal
to or less than the summation of the two drops’ radii,
they collide; otherwise, they do not.

The term K(V, v) is related to the probability p(R,
r, Xi, X,, T) that a pair of droplets of radii r and R,
having arbitrary initial separation (X, — X;), will col-
lide within time interval 7. According to Reuter et al.
(1988),

2
K(V,v) =—H p(R,r,X,,X,, T)DydDydD,. (10)
xz

Here Dy is the initial horizontal distance between the
centers of the two droplets (the projection of | X; — X, |
onto the horizontal plane); dDy and dD; are the hori-
zontal and vertical length increments, respectively; and
Z is the initial separation domain over which p(R, r,
X, X5, T) is nonzero. Note that the property of sym-
metry about the vertical axis has been used.

To calculate p(R, r, X,, X5, T) numerically, we cal-
culated an ensemble (N members) of trials, in each of
which we released a pair of cloud droplets (droplet 1
has radius R and is located at X, at + = 0; droplet 2 is
of radius r and is located at X, at t = 0) and followed
their trajectories to examine whether (or not) they
would collide within time ¢ < T. If the two droplets
collide » times in N realizations, then

limyp(R, 7, Xy, X5, T) = %
We used our thus-determined collision probability to
estimate the function
K.(V,v, Dy)

2 =

= [ pRor. % Xe TIDWAD, (1)
in terms of which K(V, v) follows by integration with
respect to Dy.

5. Results

In addition to the first-order two-particle model de-
fined above (and hereafter referred to as model 1), we
examined two simplifications of it: a zeroth-order two-
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particle model (referred to as model 2—temporal cor-
relation along the driving air parcel trajectory is ig-
nored); and a zeroth-order single-particle model (re-
ferred to as model 3—spatial correlation across the two
driving parcels is also ignored). These latter trajectory
models are fully defined in the appendix. For each ini-
tial separation, 5000 pairs of droplets were released.
The total flight time for each pair of droplets was
0.1s.

a. Large droplets, strongly turbulent cloud (oy = 2
ms, e=01m’sd)

First we considered droplets of distinct radii 50 and
100 pm. Our results (Fig. 1) for the collection kernel
from model 1 and model 2 are probably not signifi-
cantly different, and as shown in Table 1, the enhance-
ment of K (over purely gravitationally driven coales-
cence) due to turbulence was quite small (order 20% ).
The predictions from model 3 were markedly different.
Relative to model 1 (which is certainly more rigorous
than models 2, 3), model 3 underestimates collision
probability when the droplet separation is small but
overestimates when the droplets are far apart. The ex-
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TaBLE 1. Collection kemels from models 1, 2, 3 for droplets of
radii 50 zm and 100 zm in strong turbulence (o, =2.0ms™'; ¢ = 0.1
m? s°). The pure gravitational collection kernel for this case is
0.02827. The unit is 107° m* s7".

Model Model 1 Model 2 Model 3
Collection kernel 0.03332 0.03464 0.05852
Enhancement factor® 1.178 1.225 2.070

* Defined as the ratio of collection kernel to the pure gravitational
collection kernel.

planation is simple: recall that model 3 assumes that
the two cloud droplets move independently, and their
relative velocity is simply the difference of two inde-
pendent velocities. Thus, when two droplets are ini-
tially close to each other, if they do not promptly col-
lide, they fly apart rapidly (with the erroneously over-
estimated relative velocity): the collision probability
for later time becomes very small and, as a result, the
calculated collision probability for two close droplets
is reduced. On the other hand, if the initial separation
is large (but still much smaller than the integral length
scale), the falsely exaggerated relative velocity gives

1.0
model 1
—_ x  model 2
" 0.8 1 4 model 3
£
o
x
e
0.6 -
0.4 4
02 .
N o™ *‘;?QA‘“J at A s, .t 8, 4
0+ T e e S S
0 0.1 0.2 0.3 0.4 0.5 0.6
D,y (x107 m)

Fic. 1. Distribution of the collection kernel according to models 1, 2, 3 for droplets of radii 50 pum,
100 pm in strong turbulences (0 = 2.0 ms™'; e = 0.1 m*s™).
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FiG. 2. Distribution of the collection kernel according to models 1, 2 for droplets
of equal radii (50 pm) in strong turbulence.
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Fic. 3. Distribution of the collection kernel according to models 1, 2 for droplets
of radii 50 gm, 100 um in weak turbulence (oy = 0.5 ms™', ¢ = 0.01 m?s7*).
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the droplets more opportunity to collide, and thus
model 3 overestimates the collision probability for far
more separated droplets. In their comment on the paper
by Reuter et al. (1988), Cooper and Baumgardner
(1989) argued that model 3 overestimated the turbu-
lence effect. Our calculations confirm this, but model
3 does not overestimate the collision probability every-
where: for small horizontal separation model 3 under-
estimates the collision probability.

As we noted in this example, turbulence has a minor
influence on the frequency of collisions between cloud
droplets: the relative velocity due to turbulence is much
smaller than that which would be caused by gravity
alone. But in the case of the collision of two droplets
of equal size, the collection kernel due to gravitational
collision is zero, so turbulence accounts entirely for
collisions (absolute movement of each cloud droplet is
still strongly affected by gravity). The result of a sim-
ulation for the case of large droplets of equal size r
= 50 pm is given in Fig. 2. Model 2 generated a K, (R,
r, Dy) that is smaller than that from model 1, in the
range 0.015 cm < Dy < 0.10 cm. For the full-collec-
tion kernel K, model 1 yielded K = 0.94 x 10~°
m® 5!, whereas model 2 gave K = 0.77 X 10~?; model
2 underestimates the collection kernel by about 20%.

b. Large droplets, weakly turbulent cloud (o = 0.5
ms,e=001Im?s?)

It is less defensible to apply the present first-order
LS model (model 1) in weak turbulence, so the follow-
ing result will bear reexamination when better models
are developed. As shown in Fig. 3 and Table 2, whether
for droplets of different radii (50 and 100 um) or of
equal radii (50 ym), model 1 and model 2 gave (within
numerical error) equal results for the collection kernel.

c. Small droplets, strongly turbulent cloud (o, = 2
ms,e=01ms?)

In the case of small droplets (5, 10 ym), at small
(large) horizontal separation, model 2 underestimated
(overestimated) the collection kernel. Overall, model
2 substantially overestimated the impact of the turbu-
lence: the collection kernels and enhancement factors
(over gravity-driven collection) were

K=92x10""m*s™", ef =3.3
model2: K=14X10""m*s™', ef =4.38.

Although model 1 is invalid when separations d be-
tween droplets are very small (so that d > 7 does not
hold), our comparison nevertheless suggests model 2
gives a bad prediction of the collection kernel for small
droplets.

model 1:

6. Conclusions

By considering the scales of motion in a cumulus
cloud, in comparison to typical cloud droplet separa-
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TaBLE 2. Collection kernels from models 1, 2 for weak turbulence
driving large droplets of (a) different radii (50, 100 xm) and (b) equal
radii (50 um). The unit is 107® m* s™".

Model 1 Model 2
(a) Collection kernel (different size) 0.03236 0.03237
(a) Enhancement factor (different size) 1.1447 1.1450
(b) Collection kernel (identical size) 0.000465 0.000455

tions, we have suggested that to study the evolution of
a full droplet spectrum one will require a second-order,
multiparticle trajectory model. Rigorous models of that
type are not yet available, and needed turbulence sta-
tistics (at the level of fluid element acceleration) are
unknown; one must parameterize the spectral region
between the dissipation and inertial subranges.

However, for large droplets in a very turbulent cloud,
a first-order model will suffice. Using such a model,
we have shown the need to account for both the tem-
poral and spatial velocity correlations existing in the
cloud over time and space scales relevant to droplet
collisions.
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APPENDIX
Three Droplet Trajectory Models

Equations (5) of section 3 were used to calculate the
trajectories of droplets 1, 2 in all three models, but the
means to calculate U, the velocity of the air element
surrounding the droplet, differs across the three models
we have studied.

Model 1: The first-order two-particle model of sec-
tion 3c. When the temporal correlation of the driving
fluid element velocity between consecutive instants is
neglected, model 1 reduces to model 2.

Model 2: The zeroth-order two-particle model. Spa-
tial correlation between the two driving-parcel’s veloc-
ities is taken into account, but the temporal correlation
of each air parcel’s velocity is not. The trajectory equa-
tions for the air parcels containing droplets 1, 2 are

Ui(r) = 0i(1),
Ui(r) = 05(1), (A1)

where 6, and 6, are two spatially correlated random
numbers given by the Kaplan—Dinar method. When
spatial velocity correlation between the two moving air
parcels is neglected, model 2 reduces to model 3.
Model 3: The zeroth-order single-particle model.
Neither spatial correlation between the two parcel’s ve-
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locities, nor temporal correlation of each air parcel’s
velocity, are accounted. The trajectory equations are

Ui(r) = &i(n),
Us(t) = &5(1), (A2)

where £, and &, are independent random numbers, each
with a zero mean and variance o 2.
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