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ABSTRACT

“Backward” Lagrangian stochastic models calculate an ensemble of fluid element (particle) trajectories that
are distinguished by each passing through an observation point. As shown, they can be faster and more flexible
in calculating short-range turbulent dispersion from surface area sources than “forward” models, which simulate
trajectories emanating from a source. Using a backward model, one may catalog a set of “touchdown” points
(where trajectories reflect off the ground) and verticat touchdown velocities w, of particles “on their way 10” a
sensor location. It is then trivial to deduce the average concentration resulting from a surface source using the
touchdown catalog: by summing the reciprocal of w, for touchdowns occurring within the source boundary.
An advantage of this methodology is that while forward model trajectories are linked to a specific source,
backward trajectories have no such dependence. In horizontally homogeneous flow, a “library” of touchdown
catalogs (for representative surface roughnesses and atmospheric stabilities) would allow concentration (at a
given height) to be rapidly calculated at any location from any uniform surface source.

A “‘well-mixed” backward model is exploited to calculate the touchdown points of particles passing over a
small plot on their way to an observation tower and it is shown how o use those data to estimate the plot
emission rate from a single measurement of average concentration, wind speed, and wind direction on the
tower. The method was evaluated using 36 field éxperiments. Predicted emission rates using the backward
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method agreed well with mass balance estimates.

1. Introduction

When we mimic turbulent dispersion by calculating
an ensemble of fluid element (particle) trajectories with
Lagrangian stochastic (LS) models (or random-flight
models), it is conceptually natural to calculate “for-
ward” trajectories emanating from a source and mov-
ing toward a sensor location (the observation point).
However, forward LS models are computationally ex-
pensive. When predicting average concentration
downwind of an area source, the vast majority of emit-
ted particles widely miss the sensor location. Unless
the “instrument™ at that sensor location has a very
large sampling volume (Veps; necessarily V.o > 0 to
“catch™ a particle), the majority of trajectories con-
tribute to our knowledge of the average concentration
only indirectly, as being the fraction of emitted particles
not occupying Veens. If the source dimensions are large,
or if high spatial resolution is needed, a very onerous
computation may be needed to reach a statistically ac-
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curate prediction. One wonders, Is there an advantage
to calculating trajectories backward in time, from the
sensor location to the source?

Starting with Durbin (1980), two-particle backward
LS models have been used to investigate concentration
Sluctuation statistics (in ideal, nonatmospheric flows).
For that purpose, the backward formulation has two
advantages: first, that the effects of finite instrument
volume can be obviated (or quantified ), because back-
ward trajectories can be permitted to coincide at a point
(sensor location ); and second, that correct statistics of
the fluctuating mixing ratio of a tracer can be obtained,
even though the model takes no account of the incom-
pressibility constraint (false compressibility implies
false concentration fluctuation; for a review see Thom-
son 1990).

The purpose of this paper is to show that, even for
the mundane case of calculating single-particle trajec-
tories, the backward approach has much to offer in
terms of efficiency, simplicity, and flexibility. This is
especially the case in calculating short-range dispersion
from surface area or volume sources (e.g., the hazard
due to a chemical spill, or fertilizer volatilization from
agricultural fields). In particular, we will show that the
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procedure of Wilson et al. (1982; 1983), which allows
the emission rate Q (kg m™2 s™!) from circular surface
sources to be deduced from a single measurement of
average concentration, can be generalized (most nat-
urally, with the aid of a backward model) to encompass
any shape of source.

In section 2 we briefly review the theory of LS models
(especially, Thomson’s 1987 “well-mixed condition™),
derive the relationship between a given forward model
and the equivalent backward model, and show how to
derive average concentration at a sensor location from
an ensemble of backward trajectories. Some readers
might skip section 3, whereby using hypothetical ex-
periments we demonstrate the greater computational
efficiency of the backward model compared with the
forward model. The culmination of our work is section
4, where we utilize a “touchdown catalog” to estimate
the emission rate of volatile liquids from small rectan-
gular plots and compare those estimates with mass flux
balance estimates obtained in a field experiment.

2. Backward LS approach

There are two important questions to consider in
formulating a backward LS approach to determine
concentration: What is the proper form of the under-
lying LS trajectory model and how can concentration
estimates be extracted from known backward trajec-
tories? We will limit our consideration to uniform sus-
tained area or volume sources, with particular attention
to surface area sources.

a. LS model
1) FORWARD MODEL

The usual computational basis of forward LS models
is a generalized Langevin equation, which follows from
the assumption that particle position x (x;, X», X3 = X,
¥, z: along-wind, across-wind, and vertical coordinates)
and velocity u (u,, 4., u3 = u, v, w: along-wind, across-
wind, and vertical velocities ) evolve jointly as a Markov
process:

dui = ai(x’ u, [)dt + b,',j(x, u, t)dgj’
dxi = uidz, (1)

where g; and b; ; are functions of (x, u, ¢), and d¢; is
a random increment selected from a Gaussian distri-
bution having average 0 and variance dt (with d§;, d§;
independent if i # j). Once g, and b, ; have been spec-
ified, it is straightforward to calculate the average con-
centration of a passive tracer due to a given source:
Eq. (1) is discretized (see the appendix) and used to
calculate an ensemble of particle trajectories emanating
from the source, and a volume average concentration
(sustained source) is determined from the residence
time of the particles within a sensor volume Vieps.
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Thomson (1987) recognized an essential constraint
on the Langevin equation coefficients; namely, that
the Eulerian velocity probability density function g,(x,
u, ¢) must satisfy the Fokker-Planck equation (FPE)
corresponding to Eq. (1):

3¢
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3 [a,-(x, u, £)g]
X i u,-

2
8u, ou;

where B; ; denotes b; xb;x/2. Thomson called this con-
straint the “well-mixed condition.” Unfortunately, Eq.
(2) does not have a unique solution for multidimen-
sional models (Thomson 1987; Sawford and Guest
1988; Flesch and Wilson 1992). Thomson gives a par-
ticular solution under the restriction that g, is Gaussian
and that B, ; is independent of u:

[Bij(x,u,)g.], (2)
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Here u; is the instantaneous particle velocity, and U;
is the average velocity of the background flow. In this
study, we have used

¢l 2q2

2 1/2

B,-’j = 5,‘,_,‘7[ , Or bi’j = 6,"]'(";'1—) N (4)
where o2 is the Eulerian vertical velocity variance, and
7, 1s the Lagrangian decorrelation timescale for w. This
familiar specification was used in the one-dimensional
models of Thomson (1987) and Luhar and Britter
(1989). Flesch and Wilson (1992) found that a two-
dimensional model based on Eqs. (3) and (4) accu-
rately predicted dispersion within the complicated flow
of a crop canopy.

2) BACKWARD MODEL

Suppose an observer O tracks particles in the forward
time frame, using coordinates (x, #) and sees particle
velocity u; = dx;/dt. An observer O’ tracks the same
particles, but in a backward time frame. Observer O’
shares the same position coordinate (x) as O but uses
time coordinate ¢’ = T — t, where T} is an arbitrary
transformation constant (we will assume T = 0). Par-
ticle velocity according to O’ is then
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We can write a trajectory model for the evolution of
particle velocity as seen in the coordinate system (x,
u’, t') based on a generalized Langevin equation:

duj = aj(x,w, t')dt' + bi j(x, w, t')d§;,
dx; = uidt. ()

The problem is to select the model coefficients a}
and b ;.

Consider the probability of a tracer particle traveling
between x; and X,. Observer O sees a conditional
probability density P/(x,, uy, £|X;, uy, #;), which is
the probability that a particle moving forward from
(xy, u;) at an initial time ¢,, will be found at (x,, u,)
at a later time f,. Observer O’ sees the same event but
writes P?(x,, u}, t|xz, uh, t5) for particles moving
backward from (x;, u5, r5) to (x,, u}, #7). The evo-
lution of P? with ¢ (for fixed x,, u, £5) is given by an
FPE:

)i a 3
- = = Pb I i ’,t’ Pb
or, axl,i(ul" ) au’l,i[a'(xl’ul 1)P’]
82 5
————— [ B} (X, u}, t1)P°].
au'1,iau'|,j[ ,;(_Xl ui, 1) P°]

A similar FPE is valid for the unconditional probability
density function of the distribution of tracer particles
in (x, u’) phase space, g'(x, u’, t') (Gardiner 1985):
2
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If the tracer fluid elements are simply a subset of all
fluid elements (from which we chose to follow those
marked at x,, t5), we can substitute the Eulerian prob-
ability density function for all fluid elements, g,(x, u’,
t'), for g’ in the FPE:

9ga ?
ot’ ou; Ou;
This can be expressed in the (x, u, ¢) coordinate system,

noting that g,(x, —w’, ') = g,(x, u, t),u’' = —u, and
a/ot’' = —4a/at:
o __ 2

3 —E(u,-ga)
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where a; and Bj ; are evaluated at (x, —u’, —#') = (x,
u, 7). Requiring @} and Bj ; to satisfy this FPE results
in a well-mixed backward model.

As Eq. (6) differs from Eq. (2) only in the sign of
the last term on the right, we can easily obtain a par-
ticular solution a; by modifying the solution to Eq.
(2) given by Egs. (3),

a ’
o, (aiga)
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a; = BV )= U0+ Zxow 0. (1)

As the magnitude of the random velocity fluctuations
of fluid elements should be the same for both time
frames, we choose b} ; = b; ; [Eq. (4)], and thus Bj;
= B; ;. The coefficient a therefore differs from a; only
by a sign change on the first term on the right. This
same result is obtained by Thomson (1987). Equations
(4), (5), and (7) are the well-mixed backward trajec-
tory model equivalent to the forward model of Egs.
(1), (3), and (4).

b. Calculating average concentration
1) FORWARD MODEL

The ensemble average tracer concentration at po-
sition x and time ¢, due to an arbitrary mass source
density S (kg m~3 s™!), can be written

t ©
C(X, t) = Jl J: S(XO, tO)Pf(x9 tIXO’ to)dxodto,

(8)

where P/(x, t|Xo, to) is the transition probability den-
sity, defined such that P/(x, t|xo, fo) dx is the prob-
ability that a fluid element initially at (xo, o) is found
at time ¢ in the volume dx centered on x. The calcu-
lation of P/(x, t|Xo, to) is (in effect) the function of
an LS model. Since we are concerned with a sustained
source, whose emission rate is uniform over the source
volume (or area), we may write

where S is the tracer emission rate within the source
volume and W (x,) is a dimensionless localizing func-
tion (0 or 1) that vanishes outside the source. In sta-
tionary turbulence the average concentration (for a
steady source) is time independent, and P’ depends
upon ¢ — ¢, (but not ¢ or ¢, separately), so that

C(X)=Sf Of W (x0) P! (x, t|Xo, 0)dxodl.
t= X0=—00

In a forward LS model, what is calculated in practice
is the concentration averaged over a “sensor’” volume
Veens; that is,

=
Viens VViens J1=0 Jx

0=—c0
X Pf(x, t|xq, 0)dxodtdx.

The C®(x) is conveniently determined from the easily
calculated ensemble-average particle “residence time”
within V., (centered at x) of particles released from

Xo,

7 (%, Viewl0) = |

C(x) = W(xo)

P/(x, t|xo, 0)dtdx', (9)

sens V=
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so that
v S = =

C'(x)= % W (x0) T/ (X, Viens| Xo0) dXo

sens ¥ Xg=—00

S [ =

= T (x, Viens| Xo0) dXo, (10)
Vsens Vsn:

where V. denotes the volume occupied by the source.
In practice C®(x) would be calculated from the average
of a sample of individual particle residence times (sto-
chastic variables),

VSI‘C l y

C’(x)=S Ve N &

T{(X, Vsensl Vsrc)a

where N particles are evenly released throughout V..
For a sustained ground-level area source,

C'x) = 025 L 5 Th(x, Viewldeo)
X Vsenan,__l n\X, VsenslAsrc)s

where Q is the tracer emission rate from the surface
(kg m~2s7!), A, is the source area, and N particles
are evenly released across Ag.

2) BACKWARD MODEL

A forward LS model is well suited to give predictions
of concentration, through Eq. (8), because it naturally
gives an estimation of the forward-time conditional
probability density, P/(x, t|Xo, to), for particles released
at (xy, to) and collected at (x, ¢), with ¢y < £. In contrast,
we envision a backward model where particles are re-
leased at (x, ) and collected at (xo, £o), giving an es-
timation of the backward-time conditional probability
density P?(xo, to]X, t).

(i) Backward-forward probability equivalence

Lundgren (1981) and Egbert and Baker (1984 ) show
that for incompressible flow P/ = P?. We can simply
illustrate this from the multiplication law of probability.
The probability that arbitrary events 4 and B both oc-
cur is

P(A N B) = P(4)P(B|A) = P(B)P(A4|B),

where P(A|B) is the probability of 4 occurring given
the occurrence of B, P(B|A) is the probability of B
conditional on event 4, and P(A4) and P(B) are un-
conditional probabilities of 4 and B occurring, respec-
tively. Therefore,
P(B)
= ———= P(A|B).

P(B|A4) P(A) (41B)
From this general result, we equate the forward and
backward probability of any given particle in the flow
domain occupying (X, f¢) and (x, ):
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pa(x07 tO)
pa(X, 1)

where p.(Xg, to) and p.(x, t) are the unconditional
probability densities for fluid element occupancy of
(xo, to) and (x, 1), respectively, that is, simply the mar-
ginal probability densities for position obtained from
the joint density g,,

Pb(XOa tO'x’ t)= Pf(X,l|x0,to), (11)

pa(x, t) = f g%, u, t)du.

As p.(x, t)dx is the probability of occupancy by any
given fluid element in the volume dx centered on x,
pa(X, t) is proportional to the air density at that point
and time. If we restrict our attention to a stationary
atmospheric boundary layer, we can assume incom-
pressibility, and so p,(Xg, to) = pa(X, t). Then

P(xo, to|x, t) = P/(x, t|xq, to).

(ii) Concentration calculation

It is clear that P? can be substituted for P/ in cal-
culating concentration, but how is P’ estimated with
a backward LS model? Consider emission from a
source volume V. In a forward model, P/is calculated
from the ensemble average residence time within Viep
for particles released from V... Consider a correspond-
ing backward model residence time: the time spent
within Vg (centered at xo) by particles released from
Veens (and followed backward),

[ee]

T?(Xo, Vire|X) =f P(x', t'|x, 0)dt'dx’, (12)

Ve Y2'=0

where t' = —¢. For a stationary atmosphere, the equiv-
alence between P? and P/ is such that,

f Pf(x',z|x0,0)dz=f P(xo, 0%, t)dt
t=0 =0

= 7 Prxe, 1x 00,
=0
so when comparing Eqgs. (9) and (12), we see that

TV (X, Viens| X0)dxXo = fV T(Xo, Vere|X)dX.

Vere

If Ve = Visens, then the forward residence time within
Veens (Of particles released from V) equals the back-
ward residence time within V. (of particles released
from V.,s). On first sight this may appear to confirm
Smith’s (1957) reciprocal theorem, which states that
“concentration at x’ due to a source at x”, with the
flow in the positive x direction, is equal to the concen-
tration at x” due to an identical source at x’ (i.e., Viens
= Vi) when the direction of the flow is reversed”: in



1324

an LS model, concentration is proportional to residence
time. But in fact this proves the theorem wrong, since

fV F(X, VscnsIXO)dXO = fV F(XO, Vsrclx)dx

# T/ (o, Ve x)dX,

Vsens

where 771 denotes the forward model operating with
the mean velocity field reversed. Backward model res-
idence time differs from the corresponding residence
time according to a “reversed” forward model (U re-
versed), as the two LS models are not identical (their
a; coefficients differ) unless ¢; = 0. Thus Smith’s re-
ciprocal theorem does not apply in general and in par-
ticular for inhomogeneous turbulence.

Substituting the backward residence time into Eq.
(10) gives C® as

S
Vsens

C(x) = fy T?(X0, Vare|X)dX,

or in practice as

1 N
Cu(x) = S]'T, Z Tﬁ(x(); Vsrclx)’

n=1

where N particles are released evenly from Vi, and
T% are individual particle residence times (stochastic
variables).

The case of a surface-area source of strength Q
(kg m~2 s7!) is straightforward if we think of the source
as a thin volume extending an infinitesimal height dz
above the ground (Vg = Agcdz), with an equivalent
volumetric emission rate S = Q/dz. For a particle that
hits the ground within the source boundary with a ver-
tical “touchdown” velocity wy (which is reversed upon
impact), the contribution to T* is simply 2dz/|wy|,
provided the particle passes upward and downward
through dz in one time step. Concentration is then

vy = 21 4zl _Q05 |2
C*(x) dzNz|2w0 NZ[WO . (13)

where the summation refers to all touchdowns within
the source. (The number of such touchdowns may be
larger or smaller than N.) Calculating concentration is
therefore simple: release particles evenly within Ve
using the backward LS model and sum the reciprocal
of wy for all touchdowns within the source.

One advantage of a backward LS methodology is
the ability to get point concentration estimates. For-
ward models by necessity estimate concentration av-
eraged over Vs, and the specification of Vs involves
tradeoffs between model speed and accuracy, and the
spatial resolution of the estimated C field. In a back-
ward model, particles are released from the sensor lo-
cation, so when releasing particles at a sensor point,
Eq. (13) gives a point estimate of C.
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3. Backward model efficiency

We examined the efficiency of a backward (versus
forward) LS model for a case of short-range dispersion
from a hypothetical surface area source. We used the
forward model corresponding to Egs. (1), (3), and
(4), and the equivalent backward model, Egs. (4), (5),
and (7). Details of the model discretization, the at-
mospheric  statistics used in the models [U;,
(w; — U;)(y; — Uj), 7,], and particle release and re-
flection are given in the appendix. These are defensible
atmospheric surface-layer models under the assump-
tion of stationary, horizontally homogeneous, Gaussian
turbulence. (For dispersion from ground releases over
short distances, these assumptions are quite accept-
able.)

a. Discretization and reflection errors

It is well known that improperly constructed LS
models may have the defect of wrongly distributing
dispersing particles in such a way that, even if those
particles were initially well mixed, in time they become
unmixed. Thanks to Thomson’s (1987) well-mixed
condition, we now have the means to devise models
that are in principle (infinitesimal model time step A¢)
immune to this problem. But Wilson and Flesch (1993)
have shown that particle reflection (an ad hoc proce-
dure to keep particles within the flow domain) can
result in spurious particle density gradients near
boundaries (i.e., the LS model acts to create dp(x, t)/
dx; # 0, even as t = oo, where p(x, t) is the tracer
density), leading to concentration prediction errors
even in otherwise well-mixed models. In our surface-
layer model, spurious density gradients occurred due
to height gradients in the flow statistics (e.g., 02 or 7,),
in which case a discrete trajectory model only approx-
imates the continuous Markov process of (idealized)
particle motion. When coupled with particle reflection,
this approximation resulted in a density gradient at the
surface (see Wilson and Flesch 1993).

In our experience, errors of this nature have a limited
impact on forward models, causing significant concen-
tration prediction errors only very near reflecting
boundaries. But the biased motion near boundaries
that is symptomatic of models that are not well mixed
(either due to insufficiently small Af or illegitimate use
of reflection ) can lead to more significant problems in
backward models. The backward model results we have
presented require P = P/, and Eq. (11) shows that
these are identical only if both the backward and for-
ward LS models have the property of implying the same
tracer distribution at large time after -release. If the
backward model violates this requirement at ground,
concentration prediction errors will occur throughout
the domain when it is applied to surface sources.

The discretization error in our backward model be-
comes insignificant if At is kept small. Our approach
was simply to reduce the time step sufficiently to render
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any spurious concentration gradient negligible (by sta-
tistically comparing model results with various At).
This resulted in what may seem an unduly small time
step, At = 0.0257,, where 7, is the Lagrangian time-
scale.

b. Computation time

Consider evaporation from a circular area source
(perhaps representing a chemical spill, Fig. 1) having
a radius of 20 m in short grass (roughness length z, =
0.01 m). Suppose a prediction of C is needed at height
Z,» = 2 m at three positions (fetches): the source center,
50 m directly downstream from the source center, and
300 m downstream. We estimated the computation
time needed for the forward and backward models to
provide a stable estimate of mean concentration C (i.e.,
standard error of the estimate reduced to 10% of the
true average, determined from the forward model using
a very large number of particles). We examined three
atmospheric states: strongly stable (with Obukhov
length L = 10 m), neutral (L = c0), and strongly un-
stable (L = —10 m). With the forward model it was
necessary to specify Vins. We wanted Vi, small, so
that C” approximates the point estimate C, and we
selected a vertically oriented cylinder 0.2 m in height,
centered at z = 2 m, having a horizontal radius of 0.5
m (Fig. 1). This is a realistic choice for Vs, as a larger
radius cylinder gave C* < C.

For the aforementioned scenarios, we found the
backward model was about 50 times faster than the
forward model (atmospheric stability did not change
this value). This difference was due to the scale dis-
crepancy between Ag. and V. AS Ag increases, fewer
particles are needed in the backward model, and more
particles are needed in the forward model. Increasing
Veens decreases the number of particles needed in the
forward model. The aforementioned examples clearly
showed cases in which backward models are more ef-
ficient in predicting concentration than forward mod-
els: short-range dispersion from a substantial area
source. We could similarly show that for long-range
concentration predictions from a point source (effec-
tively a very small A4.), a forward model would be
more efficient. Between these limiting cases, the com-
putational advantage (forward method vs backward)
is unclear. For our purposes, the simplicity and flexi-
bility of the backward approach in any case outweighs
considerations of computational efficiency, which in
view of steady increases in computer speed, are prob-
ably of little long-term relevance.

¢. Prerunning a backward model

The independence of the required ensemble of
backward trajectories, with respect to the source ge-
ometry, allows for the possibility of prerunning a back-
ward model, and rapidly calculating C from archived

FLESCH ET AL.

1325

Sensor Volume
y AN

0.2m}

05m

2m

Area Source

1

FG. 1. Ilustration of the source-sensor geometry used in the model
computation time comparison. Concentration due to evaporation
(of a neutrally buoyant gas) from a circular surface-area source was
predicted with both forward and backward LS models. The forward
model predicts the volume-averaged concentration within the “sensor
volume,” while the backward model estimates point concentration
at the center of the sensor volume.

data when an emission (with its unique geometry) oc-
curs. For a sustained surface source, all information
needed to estimate C is contained in the touchdown
positions (xg, yo) and velocities (wp). Figure 2a shows
a stochastic set of touchdown points for those particles
that will eventually pass through the sensor location at
(x =80 m, y=—20 m, z= 2 m). Each touchdown
location has an associated wy,. This dataset represents
arelease of 5000 particles in neutral stratification, with
zo = 0.01 m. Consider the elliptical surface source
shown in Fig. 2a, centered at x = y = 0, emitting a
tracer gas. With the touchdown catalog created in ad-
vance, C at (80, —20, 2 m) is quickly determined by
summing the reciprocals of wy for touchdowns within
the ellipse. The computation time for such a sorting
program is negligible. If C is needed for a different
source, the sorting program simply resamples those
touchdowns occurring within this “new’ source.

Because the velocity statistics in the LS model can
be scaled on the friction velocity u, (see the appendix),
the touchdown field can be independent of average
wind speed, and normalized concentration (#,C/Q)
is predicted. In uniform terrain, the touchdown field
would also be independent of wind direction. There-
fore, only a few archived touchdown catalogs (for dif-
ferent L and z, values) would be necessary to calculate
C (at z = 2 m) for any surface area source in any at-
mospheric condition. A major advantage of the back-
ward LS model is this ability to prerun the model with-
out regard to the details of the eventual source geom-
etry.

d. Multiple predictions

For horizontally homogeneous flow, the same
touchdown data can be used to calculate C at multiple
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FIG. 2. (a) Catalog of the upstream touchdown positions of particles
that will eventually pass through the location (x = 80, y = —20, z
= 2 m) in neutral stratification, over a surface having z; = 0.01 m.
The cross-hatched ellipse represents a surface source. (b) The nor-
malized concentration field (Cu,/Q) at z = 2 m due to the illustrated
source in neutral stratification, obtained by repeated translation and
resampling of touchdowns “within” the source.

locations (for a constant z,,). Figure 2a illustrates
touchdown locations from which C(80, —20, 2 m) can
be calculated. To calculate C(60, 0, 2 m), x, and y,
are simply translated from the illustrated origin of (80,
—20) to an origin of (60, 0), and this new set of touch-
down points define C. Figure 2b shows the concentra-
tion field downstream of the elliptical surface source,
determined by repeatedly translating and resampling
the touchdown catalog to create a 10 m X 10 m grid
of C estimates. Little computational effort was needed
to create the 144 estimates: a single run of the backward
model gave the touchdown catalog (5000 particles).
Compare this with the 144 model runs that would be
required by a forward model (each with tens of thou-
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sands pf particle releases). We emphasize that the re-
sampling of touchdowns to predict C at different lo-

* cations requires horizontal homogeneity of the turs

bulence, a condition we generally assume when
considering short-range dispersion in uniform terrain.
Resampling would be valid for nonstationary turbu-
lence, assuming changes in the flow occur over the
whole domain at roughly the same time.

4. Estimating ground-atmosphere emission

A number of methods are available to estimate the
emission rate Q from a ground surface: ground cham-
ber measurements (e.g., Hutchinson and Mosier 1981),
eddy correlation or flux gradient methods (see Stull
1988), eddy accumulation (e.g., Baker et al. 1992),
the integrated horizontal flux method (e.g., Denmead
etal. 1977), and dispersion model-based methods (e.g.,
Wilson et al. 1983). Each approach has advantages
and disadvantages, and each can be effective (see review
by Denmead and Raupach 1993). But in terms of ac-
curacy, simplicity of instrumentation, applicability to
arbitrary source geometry, and suitability for any
chemical species, the dispersion-based methodology is
often superior. This method, in a form applicable only
to circular sources, is described by Wilson et al. (1982,
1983). We will show how this method can be conve-
niently generalized to plots of any shape, using a back-
ward LS model.

a. Dispersion model-based methodology

Assume a horizontally uniform surface source and
an atmosphere in horizontal equilibrium. ( Throughout
this paper we have neglected the complications that
arise if a full plant canopy is present.) The average
horizontal wind speed U (m s™!) and concentration C
(kg m™?) observed at any height z,, are known to satisfy

—(£ =n =f(Zm, 205 L’ h’ G)’
Q

where L is the Obukhov stability length, 4 is the depth
of the mixed layer (which has but a slight influence in
the case of short-range dispersion), and G denotes the
set of variables characterizing the source: its shape and
outline, orientation with respect to the wind, and its
position with respect to the location where U and C
are observed. We see at once that, if » is determined,
then a measurement of U and C determines Q.

One can determine »n using a turbulent dispersion
model. The practical advantages of such an approach
are important: only one observation of U and C is nec-
essary, and slow response sensors can be used (in con-
trast to eddy correlation). If the source geometry is
correctly accounted for in the dispersion model, there
are no limitations on selecting a measurement site (i.e.,
no requirement for a large fetch of source area), and
it would be unnecessary to erect a substantial tower.
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The success of this method depends upon using an
accurate dispersion model that will allow incorporation
of the complexities of the source geometry. (Of course
any assumptions implicit in the model, such as hori-
zontal flow uniformity, must be upheld at the actual
site.) The backward LS model presented in this paper
is well suited for this task.

b. Procedure for estimating Q with a backward LS
model

Predicting n from a set of backward trajectories is
straightforward. By normalizing the touchdown veloc-
ities in the LS model by U(z,,), the height z,, is selected
as a matter of convenience prior to the trajectory cal-
culations, then Eq. (13) can be rewritten as

Clen)Uam) _ 15| __2
0 N = | w0/ Uzn)

where the summation refers to touchdowns occurring
within the source boundary. The constant # is depen-
dent upon z,,, zo, L, and & through the LS model, and
on G through a sampling program that selects the
touchdown locations within the source. The use of a
backward LS model to calculate » represents an im-
provement over the methodology used by Wilson et
al. (1982; 1983). By basing the calculation on a back-
ward trajectory touchdown catalog, n can be rapidly
and easily determined for any location in, or down-
stream from, an arbitrary surface source—not just from
observations at the center of a necessarily circular plot.
Our new procedure for estimating Q has three steps:
1) run a backward LS model and catalog the touch-
downs; 2) make on-site measurements of C, U, and
wind direction; and 3) use a sampling program to
match the touchdowns with the geometry of the source,
calculating » with Eq. (14). One of the advantages of
the backward model is the ability to prerun the LS
model, creating a touchdown catalog without any
knowledge of the source geometry. Then when a source
occurs, a tower is placed at z,, within, or downstream
of, the source to measure C, U, and wind direction.
(The term “tower” is used generically to indicate the
instrument assembly. ) A cup anemometer and a slow-
response concentration sensor would be preferable for
this purpose (the underlying LS model of atmospheric
dispersion is valid only in a time-averaged sense, and
so the on-site observations of U and C must also cor-
respond to time-averaged values). The final step is to
estimate n by using a sampling program to overlay the
source geometry onto the field of touchdown points.
It is worth emphasizing the assumptions invoked in
the methodology: a spatially uniform emission rate and

n(zpy) = , (14)

horizontally homogeneous flow. Of course no situation .

will meet these criteria in detail, and some error in the
estimate of Q will result. But in many cases, such errors
can be kept small. Horizontal homogeneity is of critical
importance for our method, which relies on the inde-

ET AL. 1327

pendence of the touchdown catalogs with respect to
sensor location and wind direction. In complex terrain,
such as flow through a valley, the inhomogeneity may
be on relatively large scale, and the method valid if the
fetch is kept small (and the local flow accurately pa-
rameterized in the LS model). At the other extreme,
an area source may be bare soil surrounded by short
grass, with inhomogeneity introduced by the step
change in surface roughness. But this inhomogeneity
will be of little importance if the source dimensions
and the sensor height are kept large in relation to the
roughness heights. To better determine the spatial av-
erage of Q when the emission rate varies, sensors should
be placed as far downwind of the source as possible
(while still having a detectable C level). This both in-
creases the effective sampling area and gives a more
even spatial “weighting” over the source (touchdowns
more evenly spread). Any imormation on the spatial
variability of Q within the source requires measure-
ments of C at different locations. Likewise, if two
sources contribute to create a joint plume, C measure-
ments at two locations would be needed to determine
Q for each source (three C measurements for three
sources, etc.). In principle, these two measurements
need only be slightly separated.

¢. Validation of the backward LS methodology

The backward LS methodology for estimating Q was
evaluated using emission data from 36 field experi-
ments, conducted in near-neutral conditions at the Ex-
perimental Proving Ground of the Defence Research
Establishment Sufhield, in southern Alberta, Canada.
The short-grass prairie terrain was uniformly flat with
2o ~ 0.025 m. A summary of the major characteristics
of the experiments is presented in Table 1. Four series
of experiments were conducted, each designed to doc-
ument the time dependence of the emission rate Q(¢)
for a specific volatile chemical, namely, dipropylene
glycol methyl ether (DPM), triethylphosphate (TEP),
dimethyl sulfoxide (DMSO), and methyl salicylate
{MS). The chemicals were spread over a rectangular
surface plot using either of two methods: 1) an explo-
sive dissemination from polypropylene bottles sus-
pended 1 m above the surface to produce a contami-
nated source of 24 m (across wind) by 16 m (along
wind), or 48 m (across wind) by 16 m (along wind);
or 2) a modified agricultural sprayer that created a
source 100 m (across wind) by 25 m (along wind).

An estimated emission rate was obtained for each
experiment by the mass balance approach. Integrating
the time-averaged along-wind vapor flux measured by
average concentration and wind speed sensors in a ver-
tical sampling array, we have

1 0
=3 [ cove, (1)

where D is the along-wind source length. Concentration
was determined from vapor dosages measured using
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bubblers analyzed by liquid chromatography, and wind
speed was measured using cup anemometers. For the
TEP, DMSO, and MS experiments, three sampling ar-
rays (with sensors at z = 0.3, 0.5, 1.0, and 1.5 m) were
placed at the downwind edge of the source (at the
across-wind midpoint and 3 m either side of the mid-
point), and Q,, was averaged over the arrays. For the
DPM experiments, one array (sensors at z = 0.5, 1.0,
2.0, 3.0, and 4.0 m) was deployed 5 m downwind of
the downwind plot edge, at the across-wind midpoint.
In each experiment, Q,, was measured over the various
sampling intervals indicated in Table 1, ranging from
0-3 min to 210-300 min after release. It should be
emphasized that Q,, is an imperfect estimate of the
true flux Q. One reason for this is that measurements
were not available for vapor fluxes above and below
the highest and lowest samplers. Consequently, the low-
and high-level fluxes were not known and were as-
sumed to be zero. Another flaw in Q,, is that Eq. (15)
neglects the turbulent part of the along-wind flux of
material past the sensor array.

We calculated an estimate of Q, for each measure-
ment of Q,,, using the backward LS scheme we have
described. We used a neutral stratification surface-layer
LS model, based on Egs. (4), (5), and (7), as outlined
in the appendix. We created a single touchdown catalog
from 15 000 particle releases, oriented this catalog with
respect to the source geometry, and calculated # at z,,
= ] m for each experiment. The Q, was then deter-
mined from C(z,) and U(z,). The backward LS
methodology has less accuracy over the shorter sam-
pling intervals used in these trials. The LS model is
valid only in a time-averaged sense (the ensemble of
trajectories are representative of expected conditions
over a nominal averaging period of order 15 min or
more), and so the on-site observations of U and C
should correspond to at least 15 min of measurements.
Regardless, we have included @, calculated for time
intervals less than 15 min.

Figure 3 shows the temporal evolution of Q,, taken
from one MS trial. As expected, the evaporative flux
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FIG. 3. Time evolution of the surface efnission rate () as estimated
by a mass flux balance (Q,,) and the backward LS model methodology
(Qp), for one of the MS field trials.

decreased with time, and it can be seen that Q, tracked
the time development of Q,, quite well. In this example,
Oy initially was smaller than Q,,,, but this negative bias
disappeared as the emission from the source progressed.
The Q, bias at the early times, where the estimates
were short interval averages, may have been due to an
inadequate averaging time.

Figure 4 compares Q,,, and Q, for the MS and DMSO
experiments. Visually, the agreement was very good,
and this extended to the TEP and DPM experiments
as well. There appeared to be a slight tendency for ov-
erprediction in Q, in the DMSO experiment, and an
underprediction in the MS experiments. It is surprising
that there seemed to be no decrease in Q, accuracy for
the shorter time intervals of the experiment. We eval-
vated the quantitative agreement between the two es-
timates using the fractional bias (FB) and normalized
mean-square error (NMSE):

TABLE 1. Summary of the emission experiments conducted at the Defence Research Establishment Suffield in southern Alberta,
under near-neutral stability, at a uniformly flat short-grass prairie site (zo =~ 0.025 m).

Chemical material DPM TEP DMSO MS
Number of trials 7 8 12 9
Type of release Sprayer Explosive Explosive Explosive
Plot area 100m X 25m 24m X 16 m 24m X 16 m 24m X 16 m
’ 48 m X 16 m
Surface contamination density (g m™2) 2.5 2.0 2.0 2.0
Vapor sampling schedule (interval in minutes, from the moment 0-5 0-5 0-1 0-3
of release, over which concentration was averaged) 5-10 5-15 1-2 3-10
10-15 15-30 2-5 10-20
15-30 30-90 5-10 20-40
30-45 90-180 10-30 40-90
30-90 90-150
90-150 150-210

210-300
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Table 2 summarizes the calculated values of FB,
NMSE, and the correlation coefficient » for each series

FB NMSE =
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of field trials as well as for all field trials considered as
an entity. The 95% confidence limits on FB and NMSE
are based on the 2.5% and 97.5% points of the bootstrap
cumulative distribution function for these statistics
(Hanna 1989).

The backward model-based estimates Q, were neg-
atively biased relative to the measured flux rates Q,,
for the DPM and MS experiments, and positively
biased in the TEP and DMSO experiments. The frac-
tional bias ranged from —0.098 for the DPM field trials
(indicating an underprediction of 9.8%) to 0.101 for
the TEP trials (implying an overprediction of 10.1%),
with an overall bias of 0.015 for all the trials. The bias
in the DPM and TEP trials were not significantly dif-
ferent from zero at the 95% confidence level (i.e., Qp
was an unbiased estimate of Q,, in those trials). A linear
least-squares regression of Q, on Q,, using all the field
trial data yielded Q, = (1.04 +0.02)Q,,, + (—0.000023
+ 0.000029), with r = 0.975. The random scatter in
the residuals between Q; and Q,, as characterized by
the NMSE was low—it ranged from 0.189 for the TEP
trials to 0.031 for the DPM trials, with an NMSE for
all trials of 0.139 (i.e., the statistical scatter in the dif-
ferences between Q, and Q,, is less than 20% for all
runs). These results show that the backward LS method
can be used to predict Q with a maximum mean bias
of about 10% (although the overall bias was less than
2%) accompanied with a scatter in the prediction re-
sidual errors of 20% or less.

5, Summary and conclusions

Backward trajectory models have often been used,
on the synoptic scale, to calculate the “origin” of a
certain mass of (polluted?) air. The notion is simply
to advect in the time-varying, large-scale horizontal
velocity field, a loosely defined column of air that re-
mains well mixed in the vertical. The distinction be-
tween forward and backward models of that type is
trivial.

But the distinction is not so trivial, in the case of
calculating fluid element trajectories in turbulence. To
each forward Lagrangian stochastic (LS) trajectory
model, which since Thomson (1987) will normally
have been chosen to satisfy the well-mixed condition,

TABLE 2. Statistical evaluation of the agreement between the mass flux balance estimate of the emission rate (Q,,)
and the backward LS model estimate (Q;) for the 36 emission rate experiments.

Material DPM TEP DMSO MS All
Number of observations 20 40 81 66 207
FB —0.0983 0.101 0.0979 -0.101 0.0154
[95% conf. int.] [—0.26, 0.025] [—0.021, 0.20] [0.013, 0.17] [—0.18, —0.034] [—0.038, 0.065]
NMSE 0.0313 0.189 0.172 0.0735 0.139
[95% conf. int.] [0.015, 0.14] {0.047, 0.34] [0.064, 0.27] [0.029, 0.20] [0.082, 0.19]
r 0.995 0.982 0.968 0.988 0.974
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there corresponds a backward model. We have reex-
amined the relationship between those models. The
formalism tends to be more confusing than the fact:
in backward trajectories, one must not fail to reverse
the direction of any deterministic bias to the direction
of motion, of the sort arising due to turbulence inho-
mogeneity (see Thomson 1987). We also examined
one means to estimate the concentration due to a given
source: focusing on the residence time of trajectories
within some sensor volume.

There is often a considerable gain in computational
efficiency to be had by using a backward model. But
more significantly, in many dispersion problems the
bulk of the calculations can be done without reference
to the details of the eventual source! This permits
adopting the LS method even where very rapid esti-
mates of concentration due to a given source are needed
(e.g., emergency response).

We have given a new means to estimate the emission
rate Q from a sustained surface area source (of any
shape) in horizontally homogeneous turbulence. In
addition to an archive of backward trajectory touch-
down points (and velocities ), one requires only a mea-
surement of the mean concentration of the species of
interest, the mean horizontal wind speed, and the wind
direction—these data taken at any location within, or
downwind of, the source. The procedure is fast, requires
only the simplest measurements, and applies to any
shape of source. We have proven our method accurate,
for rectangular plots in the case that the required mea-
surements were taken close downwind in near-neutral
stability. It remains to examine how robust the tech-
nique is with regard to less central positioning of the
reference measurements (concentration and wind
speed) in the emitted plume and in nonneutral con-
ditions. .

In applying our backward LS method, we have dealt
exclusively with sustained surface sources. But the
emission from instantaneous or transient sources might
also be estimated, working either from instantaneous
measured concentration, or for greater accuracy, a time
series C(¢). In either case, touchdown times would also
be recorded: source strength Q would be calculated by
summing those touchdowns that occurred, within the
source, within a time window about the instant (or
period) when the source was active. (Of course if Q
was so-estimated from only one realization, sampling
variation about the true value would be inevitable.)

APPENDIX
LS Model Details
a. Discretization of the LS trajectory model

Discretization of the forward and backward trajec-
tory models [Eqgs. (1) or (5)] is necessary for their
application. In many cases, model results are relatively
insensitive to errors introduced by discretization, and
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so the details of discretization are unimportant (as long
as the model time step is reasonably small, say Ar
< 0.27,). But this is not the case when predicting dis-
persion from surface sources using a backward LS
model. The location of the source at a reflecting
boundary (ground) results in heightened sensitivity to
discretization errors (as discussed in section 3a) and
raises the importance of the discretization scheme.

Consider the backward trajectory model [Egs. (5)]
in stationary conditions. This model is made up of a
stochastic differential equation for u’ (Langevin equa-
tion):

du; = a;(x,w')dt' + b; ;(x)d§;,
and the deterministic differential equation for x,
dx,- = qut'.

The simplest discretization of this model would be an
explicit Euler scheme, so that

(winver = (Ui + ai(Xn, un) A" + bi ;(xn) AEj,
() )n+1 = (x)y + (ui)nAt,

where the subscript N refers to model time-step num-
ber. This scheme is correct to order At'/? for u and At
for x (Kloeden and Platen 1992). We found this
scheme unsatisfactory in practice, as it led to an over-
estimation of concentration for a surface source, due
to an anomalous particle density at the ground. Even
decreasing the model time step to a very small At
= (.0017, did not yield agreement with forward model
results (which in this case are insensitive to discretiza-
tion). More successful was an implicit scheme for x
(using the explicit scheme for u’),

(ui)ver = (ui)v + ai(xn, uy) At + b (xn)AE),
(X wve1 = (Xi)w + (UiIv1 AL,

which had a much lower sensitivity to A¢’ than the
explicit approach. We found good agreement with for-
ward models when using this scheme with a time step
At' = 0.0257,;, and the results given in this paper are
based upon this discretization.

b. Wind flow parameterization

For a Gaussian turbulence LS model, it is
necessary to prescribe U; (average velocities),
(u; — Ui )(w; — Uj) (velocity covariances), and ;(La-
grangian timescale ). We selected functional forms valid
for the surface layer, which require three surface-layer
parameters: U, L, and z, (assuming that mixed-layer
depth 2~ = 1000 m in unstable conditions). This
Gaussian model cannot account for the effects of
skewness, which are important in larger-scale disper-
sion in the unstable boundary layer.
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1) AVERAGE WIND VELOCITY PROFILE

Aligning x with the mean surface wind ensures V'
= W = (. We specified U as

5 [=() )]

Here k is von Karméan’s constant, y is the Monin-
Obukhov universal function, and L is the Obukhov
length
_uib,

kgH’
where 8, is the virtual temperature and H is the kine-

matic surface heat flux. We specified ¢ as (Businger et
al. 1971; Paulson 1970):

((4.7z

L s
1+ x 1+ x2
J—Zln( 3 )—ln( 3 )

+ 2 tan!(x) — %

L>0,

¢=

L<0,

\

where x = (1 — 152/ L)%,

Our specification of U(z) is slightly wrong, as the
aforementioned formula is “calibrated for” and nor-
mally applied to, the “cup” wind speed

S=(u?+vH)H U),

so that .S exceeds U, particularly near ground, where
the horizontal velocity variances are relatively large
compared to U. However, the distinction is small above
about 5z;.

2) VELOCITY VARIANCES

The along-wind, across-wind, and vertical velocity
variance are denoted o2, ¢2, and o%. We assume
that the velocity covariances (# — U)(v — V) and
(v — V)(w — W) vanish in the surface layer, and the
value of (u — U)(w — W) is constant, equal to —u2.

(i) Stable and neutral stratification

We created height-independent surface-layer for-
mulas based on the profiles of Wyngaard et al. (1974),
Hanna (1982), and Gryning et al. (1987), by assuming
z/h is zero (as particles of interest will never reach
large height):

o2 =4.0uk, o2=2ui, o%=17ui.

This height independence is only an approximation,
as the variances do exhibit height variation, particularly
very near the ground. However, Wilson et al. (1981)
showed very accurate prediction of short-range disper-

sion in an LS model with a constant ¢2. We compared
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predictions of a model using the aforementioned pa-
rameterizations with a model using more accurate
height-dependent values and found no significant dif-
ference between the two predictions for short-range
dispersion (<1 km) from a surface source.

(ii) Unstable stratification

The variance of w in unstable conditions is height
dependent in the surface layer, and we used the fol-
lowing formula from Panofsky et al. (1977):

5 5 z 0.67
. = 22 —-6.6~— .
oo
We assumed that ¢2 = ¢2 (roughly supported by ob-

servation ) and used the formula for ¢2 given by Gryn-
ing et al. (1987), with z/A = 0. Thus,

2=¢2=0.35w3 + 2.0u3,

Oy = 0y

where w, is the convective velocity scale,

e (-

Lk

Over short ranges, 4 significantly effects dispersion only
through its effect on o2, (The effect of 4 on along-wind
dispersion is limited in most cases as o,/ U is small,
and the effect of 4 in limiting vertical dilution is un-
important at short distances. ) At a maximum sensitiv-
ity, o2 is proportional to ~2%%7; so that overestimating
h by a factor of 3 leads to an overestimation of o2 by
roughly a factor of 2, and of lateral spread of a plume
(o, ¢ ¢,) by about 1.4. This relative insensitivity of
short-range dispersion to ~ permits us to specify a con-
stant value of # (chosen as 1000 m) in unstable con-
ditions.

3) LAGRANGIAN TIMESCALE

We used the same decorrelation timescale for each
of the three velocity components, from the formulas
of Wilson et al. (1981), which were stability corrected
in a rational manner and yielded agreement with the
Project Prairie Grass short-range dispersion experi-
ments:

0.5z 1
_ow (——-——1 n SZ/L) , for L>0,
= 0.25
9—'2(1 —65) , for L<O0.
Ow L

These formula are equivalent for neutral stability (| L |
= o0 ). The selection of a single timescale for all velocity
components is usually justifiable for short-range dis-
persion, where meso- and synoptic-scale fluctuations,
with different component timescales, have little effect
on dispersion.
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c. Particle release and reflection

In the forward model, particles were released with
random position distributed uniformly across the
source at z = z,, with a random velocity chosen from
the Eulerian probability density distribution g,(zo, u).
In our backward model, particles were released at the
sensor location of interest (Xy, Ym> Zm), With a ran-
domly chosen velocity u’ = —u, consistent with g,(z,,,
u). The model time step Af was chosen as 0.0257;, on
the basis of trials to determine the largest Az which still
allowed only a negligible density buildup at the ground
(by “density buildup,” we mean a particle spatial dis-
tribution that was not perfectly uniform along the z
axis).

The ground surface in the model was set at z, and
taken to be a perfect reflector. When a particle reached
the surface it was “bounced,” and the sign of the along-
wind and vertical velocity fluctuations [(# — U) and
w] were reversed (to retain proper u-w correlation).
When a particle reached z, (touchdown), its horizontal
position and vertical velocity [ normalized by either u,
or U(z,,) depending on the application ] were recorded.

REFERENCES

Baker, J. M., J. M. Norman, and W. L. Bland, 1992: Field-scale
application of flux measurement by conditional sampling. Agric.
For. Meteorol., 62, 31-52.

Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971:
Flux-profile relationships in the atmospheric surface layer. J.
Atmos. Sci., 28, 181-189.

Denmead, O. T., and M. R. Raupach, 1993: Methods for measuring
atmospheric gas transport in agricultural and forest systems.
Agricultural Ecosystem Effects on Trace Gases and Global Cli-
mate Change, ASA Special Publication No. 55, American Society
of Agronomy, Madison, Wisconsin, 19-43.

——, J. R. Simpson, and J. R. Freney, 1977: A direct field mea-
surement of ammonia emission after injection of anhydrous
ammonia. Soil Sci. Soc. Amer. J., 41, 1001-1004.

Durbin, P. A., 1980: A stochastic model of two-particle dispersion
and concentration fluctuations in homogeneous turbulence. J.
Fluid Mech., 100, 279-302.

Egbert, G. D., and M. B. Baker, 1984: Comments on paper “The
effect of Gaussian particle-pair distribution functions in the sta-
tistical theory of concentration fluctuations in homogeneous
turbulence” by B. L. Sawford. Quart. J. Roy. Meteor. Soc., 109,
339-353. Quart. J. Roy. Meteor. Soc., 110, 1195-1199.

Flesch, T. K., and J. D. Wilson, 1992: A two-dimensional trajectory-
simulation model for non-Gaussian, inhomogeneous turbulence
within plant canopies. Bound.-Layer Meteor., 61, 349-374.

Gardiner, C. W., 1985: Handbook of Stochastic Methods for Physics,
Chemistry, and the Natural Sciences. Springer-Verlag, 442 pp.

JOURNAL OF APPLIED METEOROLOGY

VOLUME 34

Gryning, S. E., A. A. M. Holtslag, J. S. Irwin, and B. Sivertsen, 1987:
Applied dispersion modelling based on meteorological scaling
parameters. Atmos. Environ., 21, 79-89.

Hanna, S. R., 1982: Applications in air pollution modelling. Afmo-
spheric Turbulence and Air Pollution Modelling, F. T. M.
Nieuwstadt and H. van Dop, Eds., Reidel Publishing, 275-310.

——, 1989: Confidence limits for air quality model evaluations, as
estimated by bootstrap and jackknife resampling methods. A¢-
mos. Environ., 23, 1385-1398.

Hutchinson, G. L., and A. R. Mosier, 1981: Improved soil cover
method for field measurement of nitrous oxide fluxes. Soil Sci.
Soc. Amer. J., 45, 311-316.

Kloeden, P. E., and E. Platen, 1992: Higher-order implicit strong
numerical schemes for stochastic differential equations. J. Stat.
Phys., 66, 283-314.

Luhar, A. K., and R. E. Britter, 1989: A random walk model for
dispersion in inhomogeneous turbulence in a convective
boundary layer. Atmos. Environ., 23, 1911-1924.

Lundgren, T. S., 1981: Turbulent pair dispersion and scalar diffusion.
J. Fluid Mech., 111, 27-57.

Panofsky, H. A., H. Tennekes, D. H. Lenschow, and J. C. Wyngaard,
1977: The characteristics of turbulent velocity components in
the surface layer under convective conditions. Bound.-Layer
Meteor., 11, 355-361.

Paulson, C. A., 1970: The mathematical representation of wind speed
and temperature profiles in the unstable atmospheric surface
layer. J. Appl. Meteor., 9, 857-861.

Sawford, B. L., and F. M. Guest, 1988: Uniqueness and universality
of Lagrangian stochastic models of turbulent dispersion. Proc.
Eighth Symp. on Turbulence and Diffusion, San Diego, CA,
Amer. Meteor. Soc., 96-99.

Smith, F. B., 1957: The diffusion of smoke from a continuous elevated
point-source into a turbulent atmosphere. J. Fluid Mech., 2,
49-76.

Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology.
Kluwer Academic Publishers, 666 pp.

Thomson, D. J., 1987: Criteria for the selection of stochastic models
of particle trajectories in turbulent flows. J. Fluid Mech., 180,
529-556.

——, 1990: A stochastic model for the motion of particle pairs in
isotropic high-Reynolds-number turbulence, and its application
to the problem of concentration variance. J. Fluid Mech., 210,
113-153.

Wilson, J. D., and T. K. Flesch, 1993: Flow boundaries in random-
flight dispersion models: Enforcing the well-mixed condition.
J. Appl. Meteor., 32, 1695-1707.

——, G. W. Thurtell, and G. E. Kidd, 1981: Numerical simulation
of particle trajectories in inhomogeneous turbulence, I1I. Com-
parison of predictions with experimental data for the atmospheric
surface-layer. Bound.-Layer Meteor., 21, 443-463.

—, ——, ——, and E. G. Beauchamp, 1982: Estimation of the
rate of gaseous mass transfer from a surface source plot to the
atmosphere. Atmos. Environ., 16, 1861-1867.

——, V. R. Catchpoole, O. T. Denmead, and G. W. Thurtell, 1983:
Verification of a simple micrometeorological method for esti-
mating the rate of gaseous mass transfer from the ground to the
atmosphere. Agric. Meteorol., 29, 183-189.

Wyngaard, J. C., O. R. Cote, and K. S. Rao, 1974: Modelling the
atmospheric boundary layer. Adv. Geophys., 18A, 193-211.



